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Synopsis

Our defense against solar ultraviolet (UV) damage to skin comprises endogenous mechanisms of DNA repair
and pigmentation, and exogenous application of light-absorbing and reflecting sunscreens. Our most
important endogenous defense, DNA repair, has been the focus of molecular and clinical research, and recent
advances are summarized here. The approach of using microbial DNA repair enzymes to augment the natural
DNA repair capacity of skin has gained acceptance in many commercial products, and clinical studies have
supported their benefits.

INTRODUCTION

DNA repair is the most important endogenous protection against sunlight damage to
skin. A deficiency in DNA repair causes the genetic disease xeroderma pigmentosum (XP)
classic form, wherein one of seven genes is disabled by mutation, resulting in extreme sun
sensitivity, skin cancer, and premature death (1). The symptoms of XP are as severe in
people of color as in light-skinned patients, demonstrating that efficient DNA repair
capacity is more important in providing protection from ultraviolet (UV)-induced pre-
cancerous cutaneous changes than is melanin pigmentation (1). Even the heavy melanin
content of black skin affords a protection of only 20- to 60-fold against skin cancer (2),
whereas XP patients younger than 20 years have a 10,000-fold increased risk of non-
melanoma skin cancer and a 2,000-fold increased risk of melanoma (1).

Chemical and physical sunscreens are the most important exogenous systems of photo-
protection. Despite their intrinsic ability to block DNA damage (3), sunscreens are often
used at a fraction of the recommended application dose (4). The potential for systemic
absorption and environmental damage (5) has led to a search for alternatives, and increas-
ing the endogenous DNA repair system is an attractive goal.

Here, we will highlight recent advances in understanding DNA repair protection against
solar radiation and review the support for the use of exogenous DNA repair enzymes for
photoprotection.
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DNA DAMAGE

Sunlight, primarily the shorter wavelengths in the UV range, are absorbed by the DNA
in living skin cells, producing a variety of direct chemical modifications as well as modi-
fications by reactive molecules secondarily produced by sunlight (recently reviewed in ref.
6). The most common form is the cyclobutane pyrimidine dimer (CPD, fusion of adjacent
DNA bases) followed by the (6-4) photoproduct (6-4PP, also a fusion of DNA bases) and
oxidation of the DNA base guanine producing 8-oxo-guanine (8oGua). On a macroscopic
level, the occurrence of CPDs is randomly distributed along the genome at dipyrimidine
sites, but closer examination has revealed that nucleosomes influence DNA damage for-
mation and repair (7), and hotspots adjacent to certain transcription-binding sites prefer-
entially accumulate DNA damage.(8) Telomeres, the special tips of chromosomes, are
especially susceptible to damage due to the high density of dipyrimidines (9). Long wave
ultraviolet A (UVA) (UVA1 340-400 nm) produces CPD with a predilection for the basal
epidermis where the actively dividing stem cells reside, and thus broad band photopro-
tection is important for reducing the DNA damage burden (10).

The predominant mutation in keratinocyte tumors is the ultraviolet radiation (UVR)
signature mutation (11,12), and the CPD is of particular trepidation for skin health, as
not only does its formation triggers erythema and the sunburn reaction (13) but also
immune suppression that allows the outgrowth of skin tumors (14). Sunscreens are less
efficient in preventing immunosuppression than blocking erythema, perhaps because
only small amounts of the CPD are able to initiate it (15).

Recent research highlights the role of UVA in melanoma development, including DNA
damage in melanocytes and inhibition of DNA repair (16). Of particular interest is a
study showing that melanin by-products absorb UVA and continue to form CPDs even
in the absence of UVA (17). Thus, pigmentation not only protects skin from UV dam-
age but may, in some cases, also foster it. Pigmentation occurs after UV-induced
stimulation of O-melanin stimulating hormone production which then binds to melano-
cortin 1 receptor, promoting tyrosinase activity and melanin formation, and may also
stimulate DNA repair (16). On the other hand, another melanocyte-specific transcription
regulator was shown to turn up pigmentation and turn down DNA repair, and vice versa,
in a counterbalancing system (18).

DNA REPAIR

The broad outlines of nucleotide excision repair (NER) of UV-induced DNA damage
were recently reviewed (19,20) A complex of proteins, many also involved in gene tran-
scription, identify distortions in DNA produced by photoproducts, and phosphorylation
of the xeroderma pigmentosum group C protein within this complex recruits the rest of
the NER proteins to the damaged site (21). A length of single-stranded DNA containing
the lesion is excised, and the opposite intact strand serves as a template to fill in the gap.
When DNA replication uses a damaged template, an error-prone polymerase enables
replication across the lesion, at the cost of somatic mutations, but with an overall reduc-
tion in skin cancer incidence (22).

Whereas the entire genome is surveilled for damage by a global repair system, (23) a special
system of transcription-coupled repair focuses repair complexes at transcription sites
(24,25). This interactive relationship between NER and gene expression was recently
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reviewed (26). The physical relationship between transcription factor transcription factor
ITH and the NER factor xeroderma pigmentosum group A was visualized, which explains
how transcription factors are recruited to NER complexes (27). The complexity of repair-
ing DNA bound in nucleosomes and chromatin (7) is solved by the binding of UV-DNA
damage-binding protein to UV-damaged nucleosomes and the shifting of nucleosome
structure to expose DNA damage (28).

An added complexity is the ability of cellular signaling pathways, such as those regulated by
cytokines, to modify NER according to the state of the cell, organ, or body (29). Circadian
rhythm and the molecular clock affect DNA repair and related responses such as pigmen-
tation (30). One consequence of these DNA repair oversight functions is that low, chronic
doses increase expression of DNA repair proteins and result in increased repair of CPD

but not (6—4) PP (31).

Recruitment of DNA repair complexes to damaged sites starts in 1 h and peaks at 6 h (32).
(6-4) PP are repaired much faster than the CPD because of their more efficient recognition
and base flipping by XPC-Rad4 protein complex (33). Most cellular responses peak at around
6 h while inflammation, and antigen-specific immune suppression signals crest at 24 h.
Overall, the half-life of CPDs in the human skin is about 11 h when the system is within its
capacity (35), but it becomes saturated just at UV doses that produce a sunburn (36).

ENHANCING DNA REPAIR

The DNA repair capacity of the skin can be enhanced by delivering DNA repair enzymes.
The first patent for a commercial method, using phospholipid liposomes encapsulating
enzymes to deliver to skin, was granted in 1991 (37) and enables the delivery of a number
of enzymes from a variety of microbial sources, including photolyase from Anacystis nidu-
lans, UV endonuclease from Micrococcus luteus, bacteriophage T4 endonuclease V, and
80Gua glycosylase 1 from Arabidopsis thaliana. Recently, others have encapsulated the
UV DNA damage endonuclease from yeast and the pyrimidine dimer glycosylase from
Paramecium bursaria chlorella virus-1 (38). In each case, the liposome—enzyme composition

increased the repair of UV-induced DNA damage.

Today, more than 75 skincare products are available that contain DNA repair enzymes,
and dozens of clinical studies have reported prevention and enhanced regression of actinic
keratosis, nonmelanoma skin cancers, and photoaging (reviewed in ref. 39,40). Indeed,
adding DNA repair enzymes to sunscreens provides additive protection (41). The benefits
appear in a few months, suggesting that enhanced DNA repair reduces short-term cancer-
promoting signaling and long-term mutagenic events.

Another approach uses nicotinamide (vitamin B3) to overcome UV-induced energy de-
pletion and subsequent inhibition of DNA repair (42), and this also reduces the erythe-
mal response to a given dose of UV. Studies show that daily ingestion of nicotinamide
reduces the number of nonmelanoma skin cancers over a 1-year period in Caucasian skin
(42). An intriguing advance was the demonstration that secreted proteins from amnion-
derived multipotent progenitor cells applied topically on the human skin immediately
after UV irradiation reduced erythema, increased XPA DNA repair protein, and decreased
DNA damage (43). Similarly, extracellular vesicles derived from human adipose-derived
stem cells, which contain a mixture of miRNAs and proteins, mitigated many effects of
UVB irradiation (44).
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CONCLUSION

DNA repair is our primary endogenous defense against sunlight damage to skin, and
recent advances have highlighted its complexity and limitations. The speed and effi-
ciency of recognition and incision of UV-induced DNA lesions can be enhanced by the
delivery of exogenous DNA repair enzymes, in a variety of forms. Clinical studies have
confirmed an improved repair of damage and skin health in as little as a few weeks or
months of use. This technology is a valuable addition to our primary exogenous defense
using sunscreens.
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