Selective removal of sebum components from hair by surfactants

JANE CLARKE, CLARENCE R. ROBBINS, and BRENDA SCHROFF, Colgate-Palmolive Research Center, 909 River Road, Piscataway, NJ 08854.

Received August 15, 1989.

Synopsis

The detergency of three surfactants, sodium laureth-2-sulfate (SLES-2), ammonium lauryl sulfate (ALS), and sodium octeth-1/deceth-1 sulfate (SODS-1), was measured; variables examined were soil/wash cycles plus sebum component vs total sebum removal. After one soil/wash cycle SLES-2 cleans all sebum components from hair equally well (>90%). ALS is not as good, and SODS-1 is poor for all fractions.

With extended use (ten-cycle data), SLES-2 remains superior for all components (>90% removed), but the behavior of ALS and SODS-1 are substantially different from their one-cycle behaviors. Analysis of tresses washed with ALS under test and simulated use conditions suggests a build-up of fatty acid components on hair; this is interpreted in terms of a hard water ion/fatty acid interaction. Extended use data of SODS-1 show increased removal for all components when compared to the one-cycle data, suggesting either a soil release mechanism or inhibition of soiling.

We hypothesize that a technique that provides a rapid assessment of total sebum removed from hair by a detergent can be used to screen surfactants. However, to model extended use behavior, it is useful to monitor the removal of sebum components.

INTRODUCTION

Effective formulation of hair cleaning products begins with an understanding of the substrate. Perhaps of equal or even greater importance is the type of soil found on the substrate and how it is bound to the fibers. Human hair has a chemical composition, physical properties, and histological structure similar to other keratin fibers. However, the cleaning of hair presents a different, and possibly more difficult, problem because of safety restrictions. The use of fairly low temperatures and short cleaning times adds further restrictions. In comparison, products for cleaning textiles do not have to meet such restrictive criteria.

Soils on human hair can be divided roughly into four groups:
(a) Hair lipid, a fatty material composed mainly of sebum (from sebaceous glands) and lipids (from skin surface cells).
(b) Proteinaceous matter from cell debris and sweat.
(c) Extraneous materials from a polluted environment (soot, hydrocarbons).
(d) Hair product soils, e.g., conditioners, hair sprays, mousses, gels, etc.

The perception of dirty or oily hair is probably attributable to hair lipids. These materials may be sticky and can act like a "cement," causing various particulates to stick to the hair surface.

Sebum production is variable (1). This variation is documented to be seasonal, daily, and due to hormonal activity, with changes from preadolescence, through puberty, and into old age. Compositional changes also occur with both subject age (1), and as the sebum ages (1), after distribution on the hair. Furthermore, evidence exists for the classification of hair sebum into two types: external or surface sebum, and internal sebum (2). External sebum contributions combine with the physical properties of the hair fibers (curliness, diameter) to furnish hair with an oily appearance. It is reasonable to assume that the external sebum, which is easily extractable into lipid solvents, can be shampooed off, while the internal lipid is more difficult to remove. In fact, very strong extraction procedures and enzymatic hydrolysis of hair keratin (2) is needed to remove this material. The exact origin of the internal lipid is under debate, but Koch et al. (2) have provided evidence that most of the components are those found in external lipid. This suggests at least partial origination of these lipids from the sebaceous glands.

Several published papers detail methods for extracting hair lipid (external and internal) both in vitro and in vivo (1-4) and for quantifying the data. There are obvious disadvantages in collecting lipid in vivo by solvent extraction. Gravimetric analysis, because of the small quantities involved even after in vitro extraction, requires sensitive weighing equipment and care.

Several authors have carried out compositional analysis of extracted lipid/sebum. Shaw (5) used gravimetric and spectrophotometric methods to assess total lipid, a fluorimetric technique to determine cholesterol, and thin layer chromatography (tlc) and gas-liquid chromatography (glc) to distinguish between major components of the lipid. Koch (2) determined the total amount and composition of extracted sebum by high pressure liquid chromatography (HPLC). Breuer (6) also reports data for quantifying components of extracted sebum using an HPLC technique. Thompson et al. (7) have described a gas chromatography system for the analysis of sebum components extracted into hexane from hair (in vitro).

This work arose from our use of a modification of the Thompson et al. technique to determine the extent to which a test measuring total sebum removal from wool (by surfactants) was applicable to predicting surfactant performance against sebum, and to investigate certain surfactants of proprietary interest. Thus this work builds upon the published study of Thompson et al. We believe that the knowledge acquired in determining surfactant selectivity for removal (cleaning) of sebum components from hair can provide important guidance for formulating shampoos and other hair cleaning products.

MATERIALS AND METHODS

ARTIFICIAL SEBUM

The artificial sebum used in all experiments was prepared according to the Spangler formula (8) shown in Table I.
Table I

Artificial (Spangler) Sebum (8)

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linoleic acid</td>
<td>5.0</td>
</tr>
<tr>
<td>Squalene</td>
<td>5.0</td>
</tr>
<tr>
<td>Oleic acid</td>
<td>10.0</td>
</tr>
<tr>
<td>Coconut oil</td>
<td>15.0</td>
</tr>
<tr>
<td>Olive oil</td>
<td>20.0</td>
</tr>
<tr>
<td>Cholesterol</td>
<td>5.0</td>
</tr>
<tr>
<td>Stearic acid</td>
<td>5.0</td>
</tr>
<tr>
<td>Palmitic acid</td>
<td>10.0</td>
</tr>
<tr>
<td>Paraffin</td>
<td>10.0</td>
</tr>
<tr>
<td>Spermaceti wax</td>
<td>15.0</td>
</tr>
</tbody>
</table>

HAIR SUBSTRATE

In all experiments, dark brown, Oriental hair, virgin quality and of 10-inch length was used (DeMeo Brothers, New York). Prior to soiling with sebum, the hair was divided into approximately 3.5-g tresses, washed with 10% TEALS (Standapol T, Henkel) for one minute, rinsed for two minutes under running tap water (105°F), and air dried at room temperature. Tresses were conditioned in a humidity room, 70°F and 60% relative humidity, for 72 hours prior to soiling with sebum. All subsequent weights of hair were made after similar temperature and humidity conditioning.

SURFACTANTS

SLES-2 and ALS were obtained from Henkel Corporation (Standapol ES-2 and Standapol A, respectively), and SODS-1 was obtained from VISTA Chemical Company (Alfonic 8,10–20 ether sulfate). The surfactants were used as provided by the manufacturer, with no further purification. Solutions were prepared with deionized water.

HAIR-SOILING PROCEDURE

Hair tresses were soiled by suspending a preweighed tress in a solution of sebum in hexane (3.5 g hair/250 ml solution), at the required concentration. After 20 minutes in the sebum solution (with constant stirring), the hair was removed and the solvent allowed to evaporate from the tress at room temperature. After conditioning at 60% relative humidity, the tress was weighed to determine the sebum load. Soiling solutions of 6 and 3 weight percent sebum were used. A 6% solution was used for soiling tresses subsequently washed with 0.01% surfactant (soil/wash condition A) one-cycle experiment. The 3% concentration was used for soiling 1.8-g tresses of the ten-cycle experiment and for soiling tresses washed with 0.1% surfactant (soil/wash condition B). These sebum concentrations produce soiling levels on the tresses of approximately 0.04–0.055 g soil/g hair and 0.03 g soil/g hair, respectively. Hair soiled with the 3% solution is perceived to be “dirty” or “oily” (corresponding to that on heads of consumers who shampoo frequently), whilst tresses soiled in a 6% solution are “very oily,” representing perhaps an extreme in hair oiliness for most Western cultures.
The higher soiling level, however, was most often used in this work as it facilitates the subsequent gc analysis of the sebum.

After the soiled tresses were dry, each was split into two swatches of about 1.7 to 1.8 g each. One of each pair was washed with the appropriate surfactant. The other portion remained unwashed and acted as an internal control. This was necessary to compensate for sample-to-sample variation in soiling levels.

TEN-CYCLE SOIL/WASH EXPERIMENT

For the ten-cycle soil/wash experiment, the tresses were split as described above, with one swatch kept as control. The other portion was then washed and dried (described below) and placed in a constant humidity room overnight. The next day these tresses were soiled again with sebum, allowed to dry at room temperature, and placed in the constant humidity room overnight. The following day the tresses were again washed with the appropriate surfactant. This soil/wash cycle was carried out ten times. The order for both soiling and washing procedures was randomized.

HAIR-CLEANING PROCEDURE

Cleaning of the soiled tresses was achieved using a bulk process similar to that described in reference 7. The soiled hair tress was suspended in 100 ml of either 0.1% or 0.01% aqueous surfactant at 110°F and agitated (magnetic stirrer) for five minutes. Tresses were then rinsed under running tap water (105°F) for 20 seconds (total rinse volume 500–600 ml). Heat from a hand-held drier was applied for one minute and the drying completed at room temperature. Conditioning in the humidity room followed.

These surfactant concentrations are very low and for SODS-1 are below the cmc. Since oily soil removal occurs through solubilization via micelles, we would expect poor results with this surfactant. In fact, even at concentrations above the cmc, SODS-1 is a poor detergent for removing oily soil. It is included in this study as a negative control.

EXTRACTION OF SEBUM FROM HAIR

Before the sebum residues were extracted, all tresses were placed in a forced air draft oven at 55–60°C for four hours. This helped to ensure a uniform moisture content throughout the sample set. About 1 g of hair from each tress was weighed into a vial, 20 ml of hexane added, and the sealed vial shaken on a mechanical shaker for 30 minutes. Hexane was used as the extraction solvent based on data presented in reference 7. These data claim chromatographic profiles of the hexane extract of sebum-soiled tresses to be comparable to profiles of standard sebum/hexane solutions.

After shaking, 15 ml of solution was pipetted from each vial into a previously weighed second vial. The sample was evaporated to dryness (at room temperature) by gently blowing filtered nitrogen over the liquid surface. Subsequently the vials were weighed to estimate total extracted sebum, and the residues analyzed by gas chromatography to determine sebum composition. Sample residues were dissolved in hexane containing internal standard, Eicosane, to a concentration of approximately 6 mg/ml. Sample injection amount was 0.4 microliters. The analyses were performed on a Carlo Erba Mega 5360 High Resolution Capillary Gas Chromatograph fitted with a cold on-column.
injector and a flame ionization detector. The column is a Supelco 60 meter × 0.75 mm i.d. glass column coated with SPB-1 liquid phase to a film thickness of 1.0 microns. Detector temperature was 325°C. GC oven initial temperature was 220°C, held for eight minutes, ramping up to 310°C at 4°C per minute, and holding for 55 minutes. Figure 1 is a typical gas chromatogram of Spangler sebum; we confirmed peak identifications by mass spectrometry. Note that triglycerides are not detected under the column conditions used; previous data indicate that these materials are easily removed by surfactants (7). We intend to modify our chromatographic system to test this conclusion ourselves.

RESULTS AND DISCUSSION

The objective in this work was to determine if surfactants selectively remove sebum components from hair. Tresses were washed in dilute (0.01 to 0.1%) bulk (100 ml) detergent solution rather than attempting to simulate actual shampooing, because Thompson et al. (7) have shown similar results with improved precision by the bulk method.

These low detergent concentrations are used to facilitate analysis of the sebum residues on the hair. If higher concentrations are employed, the recovery and subsequent analysis of the sebaceous residue is not practically feasible because of the very small amount of

![Figure 1. Capillary gas chromatogram of Spangler sebum. 1. Tetradecanoic acid; 2. hexadecanoic acid; 3. n-eicosane (internal standard); 4. 9, 12-octadecadienoic acid; 5. 9-octadecanoic acid; 6. octadecanoic acid; 7. n-docosane; 8. n-tricosane; 9. n-tetracosane; 10. n-pentacosane; 11. n-hexacosane; 12. n-heptacosane; 13. n-octacosane; 14. squalene; 15. n-nonacosane; 16. hexadecyl dodecanoate; 17. n-triacontane; 18. n-hentriacontane; 19. cholesterol; 20. hexadecyl tetradecanoate; 21. n-dotriacontane; 22. n-tritriacontane; 23. hexadecyl hexadecanoate; 24. octadecyl hexadecanoate and hexadecyl octadecanoate; 25. higher molecular weight ester.](image-url)
residue that is recovered. However, experiments in which soiled hair was handwashed using 10% surfactant, simulating actual use conditions, have shown results similar to those reported here for these test conditions (9). These handwashing tests are discussed later in the text.

Five replicates for each of the following three surfactants have been performed:

- SODS-1—Sodium octeth-1/deceth-1 sulfate
- ALS—Ammonium lauryl sulfate
- SLES-2—Sodium laureth-2 sulfate

The surfactants were chosen on the basis of total sebum removal data obtained using a wool substrate as a model keratin (9). Briefly, sebum removal from wool swatches is measured by monitoring the removal of a lipid-soluble dye (coadsorbed with the sebum) using a reflectance technique. These data (Table II) show that the surfactants may be considered as poor (SODS-1), medium-good (ALS), and good (SLES-2). Data are also shown for a second set of soil/wash conditions (B) (0.03 g soil/g hair; 0.1% surfactant); values are averages of three replicates. As evidenced in Table II, values for the total sebum removed are in good agreement for the three experimental conditions (and two substrates) shown. For both A and B conditions, the amount of soil removed from hair is larger or equal to that for a wool substrate. The order of superiority of surfactants is also maintained (agreement with detergency theory), and the wool and hair values are close in magnitude. The total sebum removed under B conditions is larger than for A: as expected, the combination of lower soil loading and higher detergent concentration promotes better cleaning.

The methods used in this work, soil/wash conditions and component identification, have been adapted from work reported in the literature (7). Three cleaning processes were described (7): bulk bath, finger squeeze, and controlled pressure/sponge; the data show that the bulk bath method produces the most uniform results. Therefore, we have used the bulk method to provide as much precision in our experiments as possible and have drawn conclusions by statistical analysis of the data using a p value of 0.05 as the decision criterion. The conclusions in the Thompson paper (7) are based upon the less reproducible controlled pressure/sponge cleaning process.

Thompson et al. (7) evaluated the shampoo detergency of three surfactants commonly used in shampoos: ALS, SLES-2, and AOS (sodium alpha olefin C_{14}-C_{16} sulfonate) against fatty acids, cholesterol, paraffin waxes, wax esters, squalene, and triglycerides. The gc system used in our work did not allow for detection of the triglycerides and all other fractions at the same resolution. The triglycerides have much longer peak reten-

<table>
<thead>
<tr>
<th>Surfactant</th>
<th>% Removed (Cond. A)</th>
<th>% Removed (Cond. B)</th>
<th>% Removed (Wool)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SODS-1</td>
<td>40.7 ± 15</td>
<td>56.7 ± 25</td>
<td>35 ± 4</td>
</tr>
<tr>
<td>ALS</td>
<td>72.4 ± 9</td>
<td>97.3 ± 2</td>
<td>79 ± 3</td>
</tr>
<tr>
<td>SLES-2</td>
<td>93.7 ± 3</td>
<td>97.6 ± 2</td>
<td>88 ± 2</td>
</tr>
</tbody>
</table>

Condition A: Hair soiled at 0.04–0.055 g soil/g hair and washed with 0.01% surfactant.
Condition B: Hair soiled at 0.03 g soil/g hair and washed with 0.1% surfactant.
Wool: 3-inch × 4.5-inch wool challis swatch soiled with sebum/lipid-soluble dye soil.

Purchased for the exclusive use of nofirst nolast (unknown)
From: SCC Media Library & Resource Center (library.scconline.org)
tion times, and raising the temperature to speed the elution led to loss of resolution among the other peaks. Since Thompson et al. (7) stated that the triglycerides are easily removed by the three surfactants they used, with no increased build-up at 10 or 20 cycles, we elected to concentrate on the other sebum components.

ONE-CYCLE DATA

The sebum component removal data for tresses were analyzed statistically for seven components, i.e., myristic (C_{14}), palmitic (C_{16}), stearic (C_{18}), and unsaturated (oleic and linoleic) acids (C_{18:21}), cholesterol (CHOL), paraffin waxes (11 fractions combined) (PW), and esters (from spermaceti wax; five fractions combined) (EST).

The total sebum removal data is shown in Table II. As previously stated, these figures correlate well with data acquired using a wool substrate (9) (Table II).

Figure 2 shows results of component removal after one soil/wash cycle (0.01% detergent). The order of removal for the sebum components is similar: ester and paraffin wax removal is the most difficult, and cholesterol the easiest. The only difference is the magnitude of removal that is determined by the nature of the surfactant, i.e., whether it is a good or poor cleaner of lipid soils.

As mentioned, the data show the relative total sebum removal of SLES-2, ALS, and SODS-1 to be similar from hair and wool surfaces, i.e., SLES-2 > ALS > SODS-1. This order confirms that predicted by surfactant theory for oily soil detergency (10). To determine if there is selective removal of components by a surfactant, one way ANOVA
statistics have been performed on these data and removal of individual component groups compared.

The following summarizes the statistical analyses of the sebum component removal by SODS-1, for one soil/wash cycle (95% confidence level). (Component removals are significantly different when components are not underlined by the same line):

<table>
<thead>
<tr>
<th>Least removed</th>
<th>Most removed</th>
</tr>
</thead>
<tbody>
<tr>
<td>EST</td>
<td>PW</td>
</tr>
</tbody>
</table>

These analyses show that this surfactant is most effective in removing the cholesterol component from hair; it is least effective in cleaning off the esters and paraffin waxes.

For ALS, sebum component removal is as follows:

<table>
<thead>
<tr>
<th>Least removed</th>
<th>Most removed</th>
</tr>
</thead>
<tbody>
<tr>
<td>EST</td>
<td>PW</td>
</tr>
</tbody>
</table>

Here, the order of removal is the same as SODS-1 but the data (Figure 2) show that ALS removes more of each component than SODS-1 (95% confidence level). The esters and paraffin waxes are clearly more difficult for ALS to remove than the other components, with the exception of the C₁₄ materials. On the other hand, when soiled hair is washed under similar conditions with SLES-2, there are no significant differences in removal among the sebum components (p = 0.05), and SLES-2 removes all components more effectively than either ALS or SODS-1.

Consequently, after one soil/wash cycle (soiling level 0.04–0.055 g/g; 0.01% surfactant), the removal of sebum components by each of the three surfactants tested can effectively be predicted by a value derived for the total sebum removal. SLES-2 is clearly the most effective against all groups of components and SODS-1 the least effective, a confirmation of surfactant theory (10) (Figure 2).

Sebum removal data for hair soiled and washed under a second set of conditions, i.e., 0.03 g sebum/g hair and 0.1% surfactant solution, were also analyzed (9).

The order of component removal for individual surfactants was found to be similar to the order under “A” soil/wash conditions. Additionally, under these conditions of lower soil loading, both ALS and SLES-2 remove all components at >94% levels, approaching the limits of the experiment. Similar to “A” soil/wash conditions, the most difficult fractions to remove are the paraffin waxes and the esters.

Clearly the one-cycle experiments indicate that some sebum components are more difficult to remove, but the same pattern of removal exists for all three surfactants tested. Surfactant theory for oily soil detergency confirms this order (10). Thus, the one-cycle data show that a surfactant with good cleaning power removes all components well, a poor one less well. However, for all surfactants tested, the esters (from spermaceti wax) and the paraffin wax fractions are the most difficult materials to clean from the hair.
TEN-CYCLE DATA AND BUILD-UP OF SOIL

The ten-cycle data (0.01% surfactant) indicate differences relative to the one-cycle data. For the superior lipid soil surfactant SLES-2, there is no change in removal order of the components or in total percent sebum removed (Figure 3). However, there are differences in the ability of SLES-2 to remove different sebum components (p = 0.001). Two distinct groupings of components emerge: the esters and waxes are more difficult to remove than the rest (95% confidence level). These data show some selectivity for SLES-2, but it should be noted that removal of all components is high, i.e., >90%

There are, however, changes in the removal order for both ALS and SODS-1 compared to their one-cycle behaviors (Figures 4 and 5), and the difference between ALS and the latter surfactant has narrowed. For one-cycle the total sebum removal figures are 72.4% and 40.7%, respectively (significantly different at 95% confidence level); for ten cycles they are 65.2% and 59.2% (not significantly different).

The detergency behavior exhibited by the SODS-1 surfactant is as follows (Figure 4 portrays the one- and ten-cycle data for this material). The dominant feature is the large increase in percent removal of the ester and paraffin wax fractions after ten cycles. In fact, all sebum components show increased removal to some extent; for the aforementioned components this increase is substantial. These results may indicate a soil release mechanism is occurring: SODS-1 may be adsorbing onto the hair during subsequent washes, thus preventing further adsorption of certain sebum components. Regardless, the data show that extended use of this surfactant does not induce build-up, but rather enhances removal.

![Figure 3](image-url)
Figure 3. Removal of sebum components by SLES-2 for one and ten soil/wash cycles.
When data are analyzed (Figure 5) for component residues after ten soil/wash cycles with ALS detergent, there is a decrease in removal for the saturated fatty acid fractions (compared to one-cycle behavior), perhaps indicative of build-up or selective cleaning. The removal of cholesterol, unsaturated acid, ester, and paraffin wax fractions is similar to the one-cycle level.

At the 95% confidence level cholesterol removal is different from the rest (except unsaturated acids); saturated acid fractions remain more readily on the hair. There is distinct evidence of build-up of the saturated fatty acid materials (C₁₄, C₁₆, and C₁₈) on the hair. This build-up is probably due to the interaction between water hardness (Ca²⁺, Mg²⁺ ions), the fatty acids, and ALS. The tap water used in our experiments is 75–80 ppm (as CaCO₃), higher than the 60 ppm reported in reference 7. SLES-2 and SODS-1 do not show this behavior; the ethoxy units apparently aid in preventing this hard water reaction.

In a separate experiment in which 3.5-g hair tresses were successively soiled and hand-washed (ten soil/wash cycles; soil aged overnight between washings), the detergency of 10% ALS and SLES-2 to clean sebum from hair was compared. ESCA data confirmed an increase of calcium ion on the ALS-washed hair as compared to SLES-2 washed tresses. Also, panelists evaluated the ALS-washed tresses to be significantly duller (95% confidence level) than the SLES-2 treated hair. The dulling is presumably a manifestation of the fatty acid residue build-up.

These ALS data affirm that ALS is a good surfactant, although its sebum removal efficacy is less than that for SLES-2. The results are again in accord with surfactant
Figure 5. Removal of sebum components by ALS for one and ten soil/wash cycles.

detergency theory (10). Since these results are for a pure surfactant, more data are necessary to draw any conclusions for extrapolating to shampoos, since other ingredients that alter surfactant properties are used in shampoo formulations.

For one soil/wash cycle, Thompson et al. conclude that the polar materials are more easily cleaned from hair than the non-polar, and that the degree to which the latter are removed is dependent on the surfactant. Our present data are in general agreement with these conclusions; however, our data show that squalene does not build up after ten soil/wash cycles. We also concur that the paraffin waxes are the most difficult materials to remove (along with the spermaceti esters) and that SLES-2 is superior to ALS for cleaning lipid soils.

The Thompson paper indicates the cholesterol fraction to be difficult to remove for one and 20 cycles. For ten cycles there is a dramatic increase from 65% to 85% removal, a value more consistent with our results showing that cholesterol is easily cleaned from hair.

Squalene is present in the sebum used to soil the hair and appears in calibration chromatograms of the sebum. However, after the extraction procedure it is not found in either control or washed tress extracts. The drying and extraction procedures are those reported (7), so it is not clear why no squalene is detected in practically any chromatogram under either of our soil/wash conditions. Preliminary data does indicate some loss of squalene during the low-level heating to provide a uniform moisture content throughout the sample set. This heating may be enough to remove any squalene not cleaned off by the wash surfactant and thus may explain the absence of squalene in
extract chromatograms. One would expect, though, that if squalene is building up, this effect would be evident in our ten-cycle data even if much is vaporized after one cycle. However, there is no evidence of this, and we are at a loss to explain this anomaly between these and the Thompson data for the squalene component.

In summary, our data show that for one soil/wash cycle, surfactants do selectively clean sebum components from hair at low concentrations. But, as a first approximation, the amount of sebum removed is a function of the detergency of the surfactant, and thus the difference between SLES-2 and ALS is primarily a function of the superior detergency of the former [as predicted by surfactant theory (10); SLES-2 has the lower cmc] rather than differences in selective cleaning. The non-polar sebaceous components (paraffin waxes, esters) are more difficult to remove than the more polar ones, but we contend that the overall surfactant detergency is the determining factor. For ten soil/wash cycles, we find that SLES-2 is superior, and a build-up is found on hair washed with ALS under both (a) the model conditions using 0.01% surfactant and bulk washing and (b) realistic conditions using 10% surfactant and handwashing. This we attribute to hard water/fatty acid interactions. We believe that the data of this paper provide sufficient evidence to warrant extended use testing of potential surfactant systems for oily soil detergency in the manner described.

REFERENCES

(9) J. Clarke, Unpublished data.
Comedogenicity and irritancy of commonly used ingredients in skin care products

JAMES E. FULTON, JR., Acne Research Institute, 1236 Somerset, Newport Beach, CA 92660.

Received September 3, 1989. Presented at the Southern California Section, California Chapter, Society of Cosmetic Chemists, Spring 1989.

Synopsis
A survey, using the rabbit ear, of the comedogenicity and irritancy of several groups of skin care products indicates that many contain follicular and surface epithelial irritating ingredients. These ingredients fall into several chemical classes. Certain generalizations can be deduced by examining the results: (1) medium-chain-length fatty acids are more potent than short- or long-chain fatty acids in producing follicular keratosis, (2) the comedogenicity and irritancy of an organic material can be reduced by combining the molecule with a polar sugar or a heavy metal, (3) increasing the degree of ethoxylation in a molecule tends to reduce the comedogenicity and irritancy of the chemical, and (4) the longer chain lipids, i.e., waxes, appear too large to produce a reaction. By following the guidelines developed in this study, it is possible to formulate nonirritating, noncomedogenic moisturizers, sunscreens, hair pomades, cosmetics, and conditioners.

INTRODUCTION
The possibility of comedogenicity and irritancy of facial skin care products has been well documented (1–3). Because of this work and an increasing public awareness, facial products that are less comedogenic are now becoming available (4). However, other skin care products such as hair conditioners, hair pomades, moisturizers, sunscreens, and even acne treatment products may be a source of cosmetic acne. By taking these products apart, testing their ingredients, and putting them back together and retesting them, an extensive ingredient listing has been created. By studying this list, the cosmetic chemist can begin to be selective in developing formulas for less irritating and less comedogenic products.

The rabbit ear assay has been used since the mid-1950s as a method of measuring follicular keratinization by externally applied compounds (5). The advantage of this rapid screening tool is that it takes only two weeks to develop follicular impactions in the rabbit ear, while it may take six months to develop similar reactions on human skin. The disadvantage of the model is its extreme sensitivity. The fragile, protected epithelium of the inner ear is extremely sensitive. Not everything that irritates this model will also irritate human skin. However, this extensive screening of cosmetic formula-
tions and their ingredients would not have been possible without the use of this animal model. We have now extended the model to include an index of surface skin irritancy as well as of follicular hyperkeratosis.

METHODS

Ingredients are mixed in propylene glycol at a 9 to 1 dilution for testing unless otherwise indicated (10% concentration). A colony of New Zealand albino rabbits that has genetically good ears and is free from mites is used. Three rabbits, weighing two to three kilograms, are used for each assay. Animals are housed singly in suspended cages and fed Purina Rabbit Chow and water ad libitum. Animals are maintained on a 12-hour light and 12-hour dark cycle. A dose of 1 ml of the test material is applied and spread once daily to the entire inner surface of one ear five days per week for two weeks. The opposite untreated ear of each animal serves as an untreated control. Follicular keratosis is judged both macroscopically (visually) and microscopically with a micrometer to measure the width of the follicular keratosis. The macroscopic response is determined by averaging the measurements of the width of six follicles using a Mitutoyo Dial Micrometer (#536-724). A similar microscopic micrometer measurement is obtained by averaging the width of six follicles under a magnification of 430 x after a 6-mm biopsy specimen is fixed in formalin, sectioned at six microns, and stained with hematoxylin-eosin. The results are then combined on a scale of one to five:

Micrometer reading	Grade	Description
0.009 in or less | 0 | No significant increase in follicular keratosis
0.010 in-.014 in | 1 | A moderate increase in follicular keratosis
0.015 in-.019 in | 2 | An extensive increase in follicular keratosis
0.020 in-.025 in | 3 | Epidermal necrosis and slough
0.025 in-.029 in | 4 | No significant increase in follicular keratosis
0.030 in or more | 5 | No irritation

Grade 5 is the presence of large comedones throughout the ear, similar to those induced by the application of our standard "positive" testing agent, isopropyl myristate. As reported in our previous studies, a minimal grade of 0 to 1 is not considered significant. Grade 2 to 3 is borderline. However, a grade of 4 to 5 is uniformly reproducible and considered positive.

The irritancy produced by the repeated application of a chemical or skin care product on the surface epidermis in the rabbit ear is also evaluated on a similar scale of 0 to 5. The grades are summarized as follows:

0 | No irritation
1 | Few scales, no erythema
2 | Diffuse scaling, no erythema
3 | Generalized scaling with erythema
4 | Scaling, erythema, and edema
5 | Epidermal necrosis and slough

To study the effects of different vehicles on comedogenicity and irritancy, several fatty acids and the D&C red pigment #36 are reexamined in different solvents. The fatty...
acids are dissolved in either a volatile solvent or sunflower oil. The D&C red #36 pigment is tested in mineral oil, propylene glycol, polyethylene glycol 400, and pentaeerythritol tetra capra/caprylate.

RESULTS AND DISCUSSION

Cosmetic acne was first reported by French dermatologists in the mid-forties. They reported on brilliantines and hair pomades causing flareups on the temple and forehead facial regions. They attributed the problems to impurities in the brilliantines (6). In 1970, Kligman requested that Gerd Plewig and I examine over 700 men to find some with normal facial skin. Much to our chagrin, the majority had cosmetic acne (7). About 70% showed some evidence of follicular keratoses on the forehead and temples. Occasionally the eruptions were noted on the cheeks down to the jawline area. The lesions were usually noninflammatory, closed comedones. A few lesions developed into small inflammatory papules. However, there were no cases of severe, cystic inflammatory acne. Histologically, the comedones from pomade acne cases were identical to biopsies taken from comedones of classic acne vulgaris patients. In surveying the hair care preparations, we felt that the actual ingredients and not trace contaminants were offenders. Interestingly, very few of the subjects attributed their follicular eruptions to their daily use of a hair pomade. This study stimulated us to examine other skin care products and ingredients.

In 1972 Kligman and Mills reported on acne cosmetica in their survey at the Acne Clinic at the University of Pennsylvania (1). Approximately one third of the adult women had a low-grade, persistent acne in the cheek area, consisting of closed comedones quite similar to those found in pomade acne. This appeared more frequently in women after age twenty and may explain one of the reasons for epidemic adult acne in women in the 1970s and 1980s. In 1976 and 1984, Fulton published results on actual cosmetic lines and on ingredients, and proposed the development of noncomedogenic cosmetics using ingredients that were nonoffenders in the rabbit ear assay (2,3). Several major cosmetic manufacturers have now produced these types of products. However, our screening indicates that work is still needed on many skin care formulations.

It became apparent during our research into potential noncomedogenic ingredients that several hypotheses could be developed: (1) In order for an ingredient to be comedogenic, it must penetrate into the follicle, and (2) once in the follicle, the chemical must produce the follicular reaction of "retention hyperkeratosis" (8). In addition, the overall penetrability of the molecule may be related to (1) the water/oil partition coefficient of the compound (HLB balance) and (2) the relative molecular weight of the ingredient. The ingredient appears to have the most potential if it is fairly soluble in both water and oil (HLB around 10 to 12) and has a range of molecular weight between 200 and 300. The comedogenicity of an ingredient may be reduced by adding a large constituent (i.e., polymers of PEGs), by adding a charged molecule (i.e., sugars), or by adding a heavy metal (i.e., zinc or lithium). This often relates to raising the HLB balance to above 12.

Examples of this concept of water/lipid solubility and molecular weights are apparent in each class of chemicals examined (Table I). Among the lanolins, the classic anhydrous lanolins are not as comedogenic as the moderately ethoxylated derivatives (laneth 10).
Table I
Ingredients and Their Comedogenicity and Irritancy

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Grade (0–5)</th>
<th>Comedo.</th>
<th>Irrit.</th>
<th>Ingredient</th>
<th>Grade (0–5)</th>
<th>Comedo.</th>
<th>Irrit.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lanolins and derivatives</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acetylated lanolin</td>
<td>0</td>
<td>0</td>
<td></td>
<td>Myristyl alcohol</td>
<td>2</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Acetylated lanolin alcohol</td>
<td>4</td>
<td>2</td>
<td></td>
<td>Cetyl alcohol</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Anhydrous lanolin</td>
<td>0–1*</td>
<td>0</td>
<td></td>
<td>Isocteryl alcohol</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Lanolin alcohol</td>
<td>0–2*</td>
<td>0</td>
<td></td>
<td>Cetearyl alcohol</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Lanolin oil</td>
<td>0–1*</td>
<td>0</td>
<td></td>
<td>Oleyl alcohol</td>
<td>4</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>PEG 16 lanolin (Solulan 16)</td>
<td>4</td>
<td>3</td>
<td></td>
<td>Stearyl alcohol</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>PEG 75 lanolin</td>
<td>0</td>
<td>0</td>
<td></td>
<td>Ceteareth-20</td>
<td>4</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Laneth-10</td>
<td>2</td>
<td>1</td>
<td></td>
<td>Ceteareth-20</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>PPG 12 PEG 65 lanolin oil</td>
<td>2</td>
<td>0</td>
<td></td>
<td>Propylene glycol</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>II. Fatty acids and their derivatives</td>
<td></td>
<td></td>
<td></td>
<td>Butylene glycol</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Caprylic acid</td>
<td>1</td>
<td>3</td>
<td></td>
<td>Hexylene glycol</td>
<td>0–2*</td>
<td>0–1</td>
<td></td>
</tr>
<tr>
<td>Capric acid</td>
<td>2</td>
<td>2</td>
<td></td>
<td>PG caprylate/caprate</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Lauric acid</td>
<td>4</td>
<td>1</td>
<td></td>
<td>PG dicaprylate/caprate</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Myristic acid</td>
<td>3</td>
<td>0</td>
<td></td>
<td>PG dipelargonate</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Palmitic acid</td>
<td>2</td>
<td>0</td>
<td></td>
<td>PG laurate</td>
<td>0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Stearic acid</td>
<td>2–3*</td>
<td>0</td>
<td></td>
<td>PG monostearate</td>
<td>0–3</td>
<td>0–1</td>
<td></td>
</tr>
<tr>
<td>Eicosanoic acid</td>
<td>2</td>
<td>0</td>
<td></td>
<td>Ethylene glycol monostearate</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Behenic acid</td>
<td>0</td>
<td>0</td>
<td></td>
<td>Glucose glutamate</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Ascorbyl palmitate</td>
<td>2</td>
<td>0</td>
<td></td>
<td>Sorbitol</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Behenyl erucate</td>
<td>0</td>
<td>0</td>
<td></td>
<td>Sorbitan laurate</td>
<td>1–2*</td>
<td>1–2</td>
<td></td>
</tr>
<tr>
<td>Butyl stearate</td>
<td>3</td>
<td>0</td>
<td></td>
<td>Sorbitan sesquioleate</td>
<td>0–1*</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Cetyl acetate</td>
<td>4</td>
<td>2</td>
<td></td>
<td>Sorbitan oleate</td>
<td>3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Cetyl ester NF</td>
<td>1</td>
<td>1</td>
<td></td>
<td>Sorbitan stearate</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Cetyl palmitate</td>
<td>0</td>
<td>0</td>
<td></td>
<td>Sorbitan isostearate</td>
<td>1–2*</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Decyl oleate</td>
<td>3</td>
<td>0</td>
<td></td>
<td>PEG 40 sorbitan laurate</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Di (2 ethylhexyl) succinate</td>
<td>2</td>
<td>0</td>
<td></td>
<td>Polysorbate 20</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Diocetyl malate</td>
<td>3</td>
<td>1</td>
<td></td>
<td>Polysorbate 80</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Diocetyl succinate</td>
<td>3</td>
<td>2</td>
<td></td>
<td>Glycerin</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Diisopropyl adipate</td>
<td>0</td>
<td>0</td>
<td></td>
<td>Glycereth-26</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Diisopropyl dimerate</td>
<td>0</td>
<td>0</td>
<td></td>
<td>Glycerol-3-diisostearate</td>
<td>4</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Ethylhexyl palmitate</td>
<td>4</td>
<td>0</td>
<td></td>
<td>Glycerol stearate NSE</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Ethylexyl pelargonate</td>
<td>2</td>
<td>3</td>
<td></td>
<td>Glycerol stearate SE</td>
<td>3</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Isooctyl oleate</td>
<td>2–3*</td>
<td>1–2</td>
<td></td>
<td>Glycerol tricaprylo/caprate</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Isopropyl isostearate</td>
<td>5</td>
<td>0</td>
<td></td>
<td>Behenyl triglyceride</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Isopropyl linolate</td>
<td>4</td>
<td>1</td>
<td></td>
<td>Pentacyrithritol tetra isostearate</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Isopropyl myristate</td>
<td>5</td>
<td>3</td>
<td></td>
<td>Pentaerythritol tetra caprylate</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Isopropyl palmitate</td>
<td>4</td>
<td>1</td>
<td></td>
<td>Wheat germ glyceride</td>
<td>3</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Isooctyl neopentanoate</td>
<td>3</td>
<td>3</td>
<td></td>
<td>Polyglyceryl-3-diisostearate</td>
<td>4</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Isooctyl stearate</td>
<td>4</td>
<td>1</td>
<td></td>
<td>Polyethylene glycol (PEG 400)</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Myristyl lactate</td>
<td>4</td>
<td>2</td>
<td></td>
<td>Sucrose distearate</td>
<td>0</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Myristyl myristate</td>
<td>5</td>
<td>2</td>
<td></td>
<td>Sucrose stearate</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Octyldecanoyl stearate</td>
<td>0</td>
<td>0</td>
<td></td>
<td>PEG 120 methyl glucose diolate</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Octyldecanoyl stearyl stearate</td>
<td>0</td>
<td>0</td>
<td></td>
<td>PEG 8 stearate</td>
<td>3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Stearyl heptanoate</td>
<td>4</td>
<td>0</td>
<td></td>
<td>PEG 20 stearate</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Tridecyl neopentanoate</td>
<td>0</td>
<td>3</td>
<td></td>
<td>PEG 100 stearate</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

III. Alcohols, sugars and their derivatives

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Grade (0–5)</th>
<th>Comedo.</th>
<th>Irrit.</th>
<th>Ingredient</th>
<th>Grade (0–5)</th>
<th>Comedo.</th>
<th>Irrit.</th>
</tr>
</thead>
<tbody>
<tr>
<td>SD alcohol 40</td>
<td>0</td>
<td>0</td>
<td></td>
<td>Myristyl alcohol</td>
<td>2</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Isoamyl alcohol</td>
<td>0</td>
<td>0</td>
<td></td>
<td>Cetyl alcohol</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Isopropyl alcohol</td>
<td>0</td>
<td>0</td>
<td></td>
<td>Isocteryl alcohol</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Myristyl alcohol</td>
<td>4</td>
<td>2</td>
<td></td>
<td>Cetearyl alcohol</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Tridecyl neopentanoate</td>
<td>0</td>
<td>3</td>
<td></td>
<td>Oleyl alcohol</td>
<td>4</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

Purchased for the exclusive use of nofirst nolast (unknown)
From: SCC Media Library & Resource Center (library.scconline.org)
Table I (continued)

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Grade (0–5)</th>
<th>Ingredient</th>
<th>Grade (0–5)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Comedo. †</td>
<td>Irrit. ‡</td>
<td>Comedo. †</td>
</tr>
<tr>
<td>PEG 100 distearate</td>
<td>2</td>
<td>PEG 150 distearate</td>
<td>3</td>
</tr>
<tr>
<td>PEG 200 dilaurate</td>
<td>3(1)** 0</td>
<td>Sesame oil</td>
<td>0</td>
</tr>
<tr>
<td>Laureth-4</td>
<td>5(2) 0</td>
<td>Corn oil</td>
<td>3(4) 0</td>
</tr>
<tr>
<td>Laureth-23</td>
<td>3 0</td>
<td>Avocado oil</td>
<td>3(2) 0</td>
</tr>
<tr>
<td>Steareth-2</td>
<td>0</td>
<td>Evening primrose oil</td>
<td>3 2</td>
</tr>
<tr>
<td>Steareth-10</td>
<td>4 3</td>
<td>Mink oil</td>
<td>3(2) 1</td>
</tr>
<tr>
<td>Steareth-100</td>
<td>0</td>
<td>Soybean oil</td>
<td>3 0</td>
</tr>
<tr>
<td>Oleth-3</td>
<td>5 2</td>
<td>Shark liver oil</td>
<td>3 2</td>
</tr>
<tr>
<td>Oleth-5</td>
<td>3 2</td>
<td>Cotton seed oil</td>
<td>3 2</td>
</tr>
<tr>
<td>Oleth-10</td>
<td>2 1</td>
<td>Peanut oil</td>
<td>2 0</td>
</tr>
<tr>
<td>Oleth-100</td>
<td>0</td>
<td>Olive oil</td>
<td>2(1) 0</td>
</tr>
<tr>
<td>Oleth-3 phosphate</td>
<td>2 2</td>
<td>Sandalwood seed oil</td>
<td>2 0</td>
</tr>
<tr>
<td>Triacetin</td>
<td>0</td>
<td>Almond oil</td>
<td>2(1) 0</td>
</tr>
<tr>
<td>PPG 5 Ceteth 10 phosphate</td>
<td>4 2</td>
<td>Apricot kernel oil</td>
<td>2(1) 0</td>
</tr>
<tr>
<td>PPG 2 myristyl propionate</td>
<td>3 2</td>
<td>Hydrogenated polylisoctane</td>
<td>1 2</td>
</tr>
<tr>
<td>PPG 10 cetyl ether</td>
<td>3 1</td>
<td>Castor oil</td>
<td>1 0</td>
</tr>
<tr>
<td>PPG 30 cetyl ester</td>
<td>0</td>
<td>Hydrogenated castor oil</td>
<td>1 0</td>
</tr>
<tr>
<td>PPG 50 cetyl ester</td>
<td>0</td>
<td>Chaulmoogra oil</td>
<td>1 0</td>
</tr>
<tr>
<td>PEG 78 glyceryl monococane</td>
<td>0</td>
<td>Babassu oil</td>
<td>1 0</td>
</tr>
<tr>
<td>PEG 8 castor oil</td>
<td>1 1</td>
<td>Squalane</td>
<td>1 0</td>
</tr>
<tr>
<td>PEG 40 castor oil</td>
<td>0</td>
<td>Maleated soybean oil</td>
<td>0 0</td>
</tr>
<tr>
<td>Polypentaeerythritol tetratetraurate</td>
<td>0</td>
<td>Safflower oil</td>
<td>0 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sunflower oil</td>
<td>0 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mineral oil</td>
<td>0–2 0</td>
</tr>
<tr>
<td>IV. Waxes</td>
<td></td>
<td>VII. Pigments</td>
<td></td>
</tr>
<tr>
<td>Candelilla wax</td>
<td>1 0</td>
<td>D & C red #3</td>
<td>3 0</td>
</tr>
<tr>
<td>Carnuba wax</td>
<td>1 0</td>
<td>D & C red #4</td>
<td>2 1</td>
</tr>
<tr>
<td>Ceresin wax</td>
<td>0</td>
<td>D & C red #6</td>
<td>1 0</td>
</tr>
<tr>
<td>Beeswax</td>
<td>0–2* 0</td>
<td>D & C red #7</td>
<td>1 0</td>
</tr>
<tr>
<td>Lanolin wax</td>
<td>1</td>
<td>D & C red #9</td>
<td>1</td>
</tr>
<tr>
<td>Jojoba oil</td>
<td>0–2* 0</td>
<td>D & C red #17</td>
<td>3</td>
</tr>
<tr>
<td>Sulfated jojoba oil</td>
<td>3 2</td>
<td>D & C red #19</td>
<td>2</td>
</tr>
<tr>
<td>Emulsifying wax NF</td>
<td>0 0–2*</td>
<td>D & C red #21</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D & C red #27</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D & C red #30</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D & C red #33</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D & C red #36</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D & C red #40</td>
<td>2</td>
</tr>
<tr>
<td>V. Thickeners</td>
<td></td>
<td>Ultramarine violet</td>
<td>0</td>
</tr>
<tr>
<td>Carboxymethylcellulose</td>
<td>0</td>
<td>Iron oxides</td>
<td>0</td>
</tr>
<tr>
<td>Carboxypropylcellulose</td>
<td>1</td>
<td>Carmine</td>
<td>0</td>
</tr>
<tr>
<td>Hydroxypropylcellulose</td>
<td>1</td>
<td>Titania dioxide</td>
<td>0</td>
</tr>
<tr>
<td>Magnesium aluminum silicate</td>
<td>0</td>
<td>VIII. Silicones</td>
<td></td>
</tr>
<tr>
<td>Carborner 940</td>
<td>1</td>
<td>Simethicone</td>
<td>1</td>
</tr>
<tr>
<td>Bentonite</td>
<td>0</td>
<td>Dimethicone</td>
<td>1</td>
</tr>
<tr>
<td>Kaolin</td>
<td>0</td>
<td>Cyclomethicone</td>
<td>0</td>
</tr>
<tr>
<td>Talc</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PVP</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VI. Oils*</td>
<td></td>
<td>IX. Sterols</td>
<td></td>
</tr>
<tr>
<td>Cocoa butter</td>
<td>4</td>
<td>Cholesterol</td>
<td>0</td>
</tr>
<tr>
<td>Coconut butter</td>
<td>4</td>
<td>Soya sterol</td>
<td>0</td>
</tr>
<tr>
<td>Hydrogenated vegetable oil</td>
<td>3</td>
<td>Peg 5 soya sterol</td>
<td>0</td>
</tr>
</tbody>
</table>

(continued)
Table 1 (continued)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Peg 10 soya sterol</td>
<td>0</td>
<td>1</td>
<td>XII. Miscellaneous</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Choleth 24</td>
<td>0</td>
<td>0</td>
<td>Octyl dimethyl PABA</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Sterol esters</td>
<td>0</td>
<td>0</td>
<td>Oxybenzone</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Phytantriol</td>
<td>2</td>
<td>2</td>
<td>Octyl methoxyccinnamate</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Octyl salicylate</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Acetone</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ethyl ether</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>X. Vitamins and herbs</td>
<td></td>
<td></td>
<td>Diethylene glycol</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A & D additive</td>
<td>2</td>
<td>0</td>
<td>monoethyl ether</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tocopherol*</td>
<td>0-3*</td>
<td>0-3*</td>
<td>Ethylene glycol</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Tocopheryl acetate</td>
<td>0</td>
<td>0</td>
<td>monomethyl ether</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Black walnut extract</td>
<td>0</td>
<td>0</td>
<td>(EGME)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Papain</td>
<td>0</td>
<td>0</td>
<td>Xylene</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Chamomile extract</td>
<td>0</td>
<td>0</td>
<td>Lithium stearate</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Vitamin A palmitate</td>
<td>1-3*</td>
<td>1-3*</td>
<td>Magnesium stearate</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Panthenol</td>
<td>0</td>
<td>0</td>
<td>Zinc oxide</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>XI. Preservatives and additives</td>
<td></td>
<td></td>
<td>Zinc stearate</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Methyl paraben</td>
<td>0</td>
<td>0</td>
<td>Triethanolamine</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Propylparaben</td>
<td>0</td>
<td>0</td>
<td>Stearic acid: TEA</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Phenoxyethyl paraben</td>
<td>0</td>
<td>0</td>
<td>Amoniomethylpropinate</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Allantoin</td>
<td>0</td>
<td>0</td>
<td>Sodium PCA</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Hydantoin</td>
<td>0</td>
<td>0</td>
<td>Hydrolyzed animal protein</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Sodium hyaluronate</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chondroitin sulfate</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Precipitated sulfur</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water-soluble sulfur</td>
<td>3</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

† Comedogenicity or ability of test substance to produce follicular hyperkeratosis.
‡ Irritancy or ability of test substance to produce surface epithelial irritation.
* Results depend on source of raw material.
** Parentheses indicate results using “refined” oil.

The higher ethoxylated derivatives with HLBs above 12 are more water-soluble and noncomedogenic and nonirritating (PEG 75 lanolin). Two of the lanolin derivatives studied require special comments: (1) The acetylated lanolin alcohols are both comedogenic and irritating, not because of the acetylated lanolin but because of the cetlyl acetate additive (Figure 1), and (2) PEG 16 lanolin (Solulan 16) is quite comedogenic and irritating, perhaps secondary to the combination of nonlanolin additives: ceteth-16, oleet-16, and steareth-16.

Among the fatty acids and esters a similar analogy is found. The mid-chain-length fatty acids, such as lauric acid and myristic acid and its analogs cause follicle hyperkeratosis. As the molecular weight of the fatty acid becomes larger and the effective charge of the overall molecule is reduced, less follicular reaction is produced. When the fatty acid is esterified with a small- to mid-size alcohol, the combination becomes more potent than the fatty acid itself. The cousins of isopropyl myristate, such as myristyl myristate, isopropyl isostearate, isostearyl neopentanoate, butyl stearate, and decyl oleate, are all comedogenic (Figure 2). Also, when branched-chain fatty acids are used, the derivatives may be more comedogenic. Large molecular weight esters, such as behenyl erucate and cetyl palmitate, are not a problem.
Similar analogies are apparent with the alcohols, ethers, glycols, and sugars. Short-chain alcohols do not cause a reaction. The mid-chain-length alcohols are comedogenic and more irritating than their fatty acid analogs (Figure 3). In the glycol series, as the hydrocarbon component becomes more dominant, the compound is more effective at producing comedones. The pure sugars are noncomedogenic. However, if they are combined with penetrating fatty acids, they may become follicular irritants. Also, if they are combined with another irritant, as in glyceryl stearate (SE), which contains added sodium or potassium stearate, the combination becomes more comedogenic. The increasing addition of polyethylene glycols to the fatty acids increases the HLB balance, reduces the follicular irritancy, and appears to prevent hyperkeratosis. An example is the oleth 3, 5, 10, 20 series (Figure 4).

Among the waxes, the hydrocarbon chains appear too long to penetrate unless the wax is modified, such as in sulfated jojoba oil. In the case of beeswaxes and jojoba oils, some commercial preparations are more comedogenic than others. This suggests more contaminants or irritants in some of the preparations. Emulsifying wax NF may be irritating, depending on the concentration of longer-chain alcohols such as cetearyl alcohol.

Chemicals such as cellulosic polymers, the silicates, and the carbomers used in the pharmaceutical and cosmetic industry to thicken lotions and creams are not usually a problem. The clays, bentonite, and kaolin are also not a problem. Neither is talc.

Clinically, natural oils such as cocoa butter and coconut butter have long been known to cause problems with pomade acne. This is confirmed in the rabbit ear assay. Also,
Figure 2. Ingredient testing in the rabbit ear assay—the macroscopic view of the results from testing isopropyl myristate. Microscopic examination confirmed the comedogenicity seen visually. Note that the ingredient is also an irritant compared to a potential substitute, octyl dodecyl stearoyl stearate.

Hydrogenated vegetable oil (Crisco®) appears to contain residual irritating lipids. Among the natural oils such as sesame oil, avocado oil, and mink oil, the results are improved when a more refined oil is used. However, it seems easier to use safflower oil and sunflower oils, which are naturally less comedogenic. Mineral oil presents a complex problem: some sources are acceptable; others are not.

D&C red colors represent a perplexing mixture of different types of red dyes and pigments. Some are mildly comedogenic; others are not. The common pigments used in powder blushers (D&C red #6, barium lake; D&C red #7, calcium lake; and D&C red #9, barium lake) are relatively noncomedogenic. However, the vehicle is also particularly important for the D&C red colors. A dry compressed powder or powder suspended in an evaporating vehicle such as propylene glycol may be noncomedogenic. The same dye incorporated into a nonevaporating oil can be comedogenic (Table II, Figure 5). Carmine, which is a red dye obtained from insect wings, is noncomedogenic and may be used as a substitute. The iron oxides, chromium hydroxide, and titanium dioxide are not a problem.

The silicones and sterols do not appear to be a problem. Among the vitamins, tocopherol is a follicular irritant. Tocopherol has been advocated by the layman for years to increase wound healing and reduce scar formation. However, it should not be used on acne-prone skin because of its potential to produce follicular hyperkeratosis. The derivative, tocopheryl acetate, is noncomedogenic, and research needs to be done to see if it is an acceptable substitute.
As for the miscellaneous items, the usual sunscreen active ingredients are noncomedogenic. Among chemical solvents, acetone, ether, and EGME are not problems, but xylene is comedogenic and an irritant. When metallic bases, such as lithium, magnesium, and zinc stearate, are added to the fatty acids, the metal appears to prevent the comedogenic reaction. Among bases, triethanolamine is more comedogenic than aminomethylpropanolamine. The classic formulation of a cold cream often involves a salt bridge between stearic acid and triethanolamine. In testing different ratios [4:1, 1:1, 1:4] of stearic acid to triethanolamine (stearic acid:TEA) in a cold cream base, all combinations were found to be comedogenic.

The influence of the vehicle or solvent on the comedogenicity and irritancy of a chemical appears quite significant. For example, the use of rapidly evaporating vehicles such as acetone or ether reduces the comedogenicity of fatty acids when compared to the results obtained with sunflower oil, a nonvolatile vehicle (Table III). The effects on irritancy are reversed. Fatty acids are less irritating when delivered in a nonvolatile vehicle. As with the fatty acids, the vehicle or carrier for the D&C red pigment is extremely important. Whereas the D&C red color may be noncomedogenic in volatile propylene glycol, it may be more comedogenic in mineral oil. Possible alternatives for mineral oil, such as pentaerythritol tetra capra/caprylate and polyethylene glycol 400, also reduce the comedogenicity of the red color (Table II). We have chosen propylene glycol as the routine diluent for these studies, as it gradually evaporates and leaves a concentrate of the raw material to be tested. Also, lot after lot of propylene glycol has proven to be nonirritating and noncomedogenic.
Figure 4. Oleth-3 compared to oleic acid. The initial additions of ethylene glycols to potentially comedogenic and irritating ingredients appear to increase this propensity. Further additions of ethylene glycols, such as oleth-10 and oleth-20, tend to reduce reactions.

Some ingredient combinations—for example, the combination of glyceryl stearate with potassium stearate (available commercially as glyceryl stearate S.E.) and also the combination of D&C red #36 and mineral oil—appear more comedogenic than the individual compounds themselves. These synergistic reactions need to be studied further.
Table II
Comedogenicity of D&C Red #36 Dye in Different Vehicles

<table>
<thead>
<tr>
<th></th>
<th>Grade (0–5)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Comedo.</td>
</tr>
<tr>
<td>D&C red #36 in mineral oil</td>
<td>3</td>
</tr>
<tr>
<td>D&C red #35 in pentaerythritol tetra capra/caprylate</td>
<td>2</td>
</tr>
<tr>
<td>D&C #36 in propylene glycol</td>
<td>1</td>
</tr>
<tr>
<td>D&C red #36 in PEG 400</td>
<td>0</td>
</tr>
</tbody>
</table>

The opposite is also possible. For example, the combination produced by the ingredient D&C red #36 and the vehicle polyethylene glycol is less comedogenic than D&C red #36 when incorporated into other vehicles. The cosmetic chemist may be able to take advantage of these findings in the future to custom design noncomedogenic products.

SUMMARY

These studies indicate that skin care preparations that are nonirritating and noncomedogenic can be made. Nonreactive ingredients can be used to make elegant products, and borderline ingredients can be combined with other ingredients to reduce the reactions to acceptable levels. In spite of these guidelines, new formulations must always be examined with the rabbit ear assay before the cosmetic chemist can be assured that his ideas work.

Figure 5. The comedogenicity of D&C red #36 when incorporated into two different vehicles. The vehicle may increase or decrease an ingredient's ability to produce follicular hyperkeratosis.
Table III
Effects of the Solvent on Comedogenicity and/or Irritancy of Fatty Acids

<table>
<thead>
<tr>
<th>Fatty acids</th>
<th>Organic solvent*</th>
<th></th>
<th></th>
<th>Sunflower oil</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Comedo. (0-5)</td>
<td>Irrit. (0-5)</td>
<td></td>
<td>Comedo. (0-5)</td>
<td>Irrit. (0-5)</td>
<td></td>
</tr>
<tr>
<td>Caproic acid</td>
<td>0</td>
<td>4</td>
<td></td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Caprylic acid</td>
<td>1</td>
<td>3</td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Capric acid</td>
<td>2</td>
<td>2</td>
<td></td>
<td>3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Lauric acid</td>
<td>3</td>
<td>1</td>
<td></td>
<td>4</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Myristic acid</td>
<td>1</td>
<td>0</td>
<td></td>
<td>3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Palmitic acid</td>
<td>0</td>
<td>1</td>
<td></td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Stearic acid</td>
<td>0</td>
<td>1</td>
<td></td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Archidic acid</td>
<td>1</td>
<td>1</td>
<td></td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Behenic acid</td>
<td>1</td>
<td>0</td>
<td></td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

* Ethyl ether or acetone.

The rabbit ear assay remains important to the rapid evaluation of new ingredients and the cosmetic chemist’s formulations. Both the visual and microscopic evaluations of the rabbit ear need to be done simultaneously (9). Materials found to be noncomedogenic in the rabbit assay appear to be noncomedogenic in the human model (10). Whether highly comedogenic ingredients in the rabbit ear assay are always comedogenic in humans still remains uncertain. Currently, it is more prudent to avoid these offenders.

The major offenders, such as isopropyl myristate, acetylated lanolin alcohol, and lauric acid derivatives such as laureth-4, should be used with caution in skin care products. We are not convinced of the statement that lower concentrations of these compounds can be safely used with no comedogenic consequences (11). Human skin studies have been used to give that statement credence, but the back skin of human volunteers is relatively insensitive (7). However, when the rabbit ear assay is positive but the human back skin results are negative after only eight weeks’ exposure, the results from the rabbit ear assay should not be dismissed. The reaction may take longer or the back skin may not be the ideal testing surface.

An additional “bonus” of the rabbit ear assay is detection of the potential of an ingredient or finished product to produce an epithelial irritant reaction. It is easy to keep track of the surface irritancy while doing the follicular studies. The stratum corneum of the rabbit ear is very thin and undeveloped. This results in an extreme sensitivity of the skin to exposure to irritants. If this test finding is confirmed by others, we may find it unnecessary to use the Draize rabbit dermal irritancy test.

This paper is meant to be a survey of the ingredients used in skin care and hair care products. The survey is not at all definitive but simply designed to stimulate research, so that new noncomedogenic products will become available for those of us with acne-prone complexions. This subject has recently received an excellent review by the American Academy of Dermatology Invitational Symposium on Comedogenicity (12).

REFERENCES

Development of a novel hybrid powder formulated to quench body odor

FUJIHIRO KANDA, EIICHIRO YAGI, MINORU FUKUDA, KEISUKE NAKAJIMA, TADAO OHTA, and OKITSUGU NAKATA, Shiseido Research Center, 1050 Nippa-cho, Kohoku-ku, Yokohama, Japan 223.

Synopsis

Olfactory and instrumental analyses show that short-chain fatty acids contribute to both foot and axillary malodors.

The mechanism of choice to quench short-chain fatty acid malodors was to convert volatile short-chain fatty acids into their corresponding nonvolatile odorless metallic salts. Several metal-containing candidates were evaluated by means of headspace gas chromatography (HS-GC) for their ability to efficiently quench short-chain fatty acids. Zinc oxide was found most suitable for this purpose. Despite its strong deodorizing power, due to its aggregating ability, shortcomings such as clogging of aerosols and rough texture are unavoidable when formulating zinc oxide into deodorant products of various forms. By forming a hybrid powder in which zinc oxide is uniformly covered on the surface of a spherical resin such as nylon, these shortcomings were overcome without sacrificing any deodorizing power.

Body odor quenchers formulated with this hybrid powder were more efficacious than conventional antiperspirants and deodorants on both foot and axillary odor.

INTRODUCTION

Regardless of sex, age, or race, people have always been sensitive in trying to eliminate offensive body odors as much as possible. To fulfill such demands, countless products by various manufacturers have appeared in the marketplace. Human body odors result from interactions between secretions of eccrine, sebaceous, and apocrine glands, and resident bacteria. Several approaches have been made to control body odors, out of which the antiperspirants and antimicrobials have been most successful. Antiperspirants inhibit perspiration by means of aluminum salts, and antimicrobials inhibit odor-forming bacteria. Nevertheless, such ingredients are intended to prevent the generation of body odors and generally have little effect in reducing malodor once formed.

Body odors have been investigated in terms of chemical compound constituents by dermatologists and analytical chemists, but little is still known as to which chemical compounds are responsible for the malodor for specific body sites. We have recently...
reported that short-chain fatty acids contribute considerably to both foot and axillary odor (1). Especially in the case of foot odor, isovaleric acid was found to be the key odor component responsible for the malodor. As for axillary odor, a particular key odor component remains yet to be identified, although short-chain fatty acids of comparatively long carbon chain (>C6) seem to comprise a considerable portion of the malodor. It is well known that the method of choice in eliminating short-chain fatty acid malodors is to convert volatile short-chain fatty acids into their corresponding odorless nonvolatile fatty acid metallic salts.

In this study, ingredients capable of converting short-chain fatty acids into their metallic salts were investigated by headspace gas chromatography (HS-GC). Furthermore, deodorant products formulated with such ingredients, which hopefully will not only prevent but also act directly upon malodor already formed, were compared with conventional products for their ability to efficiently quench foot and axillary odor.

EXPERIMENTAL

HEADSPACE GC ANALYSIS FOR EVALUATING QUENCHING ACTIVES

Equilibrium headspace gas chromatography was employed to assess the ability of various compounds to efficiently quench short-chain fatty acids. HS-GC is unique in that only the vaporized portion of the sample is introduced into the GC. The method permits analysis of volatile chemicals without having to introduce the total sample matrix into the GC. The sample matrix may well contain nonvolatile compounds that are neither amenable nor desirable for GC operation. Isovaleric acid was chosen to represent the short-chain fatty acids since it was found to be the key odor component of foot odor and also because of its extremely low olfactory threshold level (2). Quantitative comparison among the candidates should easily be made since the concentration of isovaleric acid in the vapor phase should be directly proportional to the GC peak area obtained.

Approximately 80 mg of the candidate was accurately weighed in a glass vial especially designed for the headspace gas chromatograph, to which one ml of 0.5% isovaleric acid aqueous solution was added. The vial was tightly closed and placed inside an ultrasonic generator for five minutes for sample dispersion. It was then placed inside an oven maintained at 60øC for 60 minutes to allow isovaleric acid vapor to equilibrate in the headspace of the vial prior to analysis.

The vial was introduced into a Perkin Elmer SIGMA 3B headspace gas chromatograph equipped with a flame ionization detector and a three-foot glass column packed with 10% FFAP. The HS-GC was operated at a column temperature of 150øC isothermally. The headspace of the vial was automatically pressurized for four minutes, after which it was forced into the carrier gas flow. The GC peaks were recorded and the peak area was calculated in arbitrary units using a Hewlett Packard HP 3380A integrator. For each candidate, three consecutive GC runs were acquired, and the mean peak area was employed for the calculation explained later on. To check the stability of the GC, the standard isovaleric acid aqueous solution was measured once in every five sample runs.

Each candidate was evaluated by calculating a value expressed as "isovaleric acid consumption/mg ingredient." An example of how to calculate the isovaleric acid consump-
Figure 1. Calculation of iso-valeric acid consumption values. Upon addition of a quenching ingredient, the GC peak area of the standard iso-valeric acid solution decreases.

The calculation value is shown in Figure 1. The larger the value, the greater the efficacy of the ingredient to quench iso-valeric acid odor.

CONFIRMATION OF THE QUENCHING MECHANISM BY FT-IR

Fatty acids in the free form and metallic salt form are readily distinguishable by Fourier transform infrared spectrophotometry (FT-IR), since they exhibit characteristic absorption bands at different wave numbers. Therefore, the speculated quenching mechanism in which volatile short-chain fatty acids are converted into metallic salts was confirmed by FT-IR. To a mixed aqueous solution (0.1%) of propionic, iso-valeric, and caproic acids, resembling that of a sweaty body malodor, zinc oxide was gradually added until excess zinc oxide started to precipitate. The excess zinc oxide was filtered, and the filtrate was evaporated to dryness in vacuum. An FT-IR spectrum of the resulting residue in the form of a KBr tablet was acquired using a Biorad Qualimatic FT-IR, scanning a range of 4000 to 400 cm\(^{-1}\).

FORMATION OF A ZINC OXIDE/NYLON HYBRID POWDER

Although zinc oxide is a widely used cosmetic ingredient, it possesses a couple of unfavorable shortcomings that derive from its aggregating property. Even though some commercially available zinc oxides are claimed to be as small as 0.1 \(\mu\)m in particle size, they readily cohere to form massive lumps, as shown in Figure 2. This is said to be due to the electrostatic behavior of zinc oxide, and can thus easily lead to clogging of aerosol...
products. It also has a fairly rough texture, which may feel uncomfortable when applied to sensitive skin. The whiteness of zinc oxide is often considered too vivid in contrast to skin color and may be emphasized when applied to exposed parts of the body. To overcome such shortcomings, we attempted to form a composite or “hybrid” powder,

Table I

<table>
<thead>
<tr>
<th>Ingredients</th>
<th>Formula 1</th>
<th>Formula 2</th>
<th>Formula 3</th>
<th>Formula 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>AHC</td>
<td>0</td>
<td>0</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>Talc</td>
<td>50</td>
<td>50</td>
<td>35</td>
<td>50</td>
</tr>
<tr>
<td>ZnO/nylon (20%)</td>
<td>0</td>
<td>30</td>
<td>15</td>
<td>0</td>
</tr>
<tr>
<td>ZnO</td>
<td>30</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>S. microbeads</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
</tbody>
</table>

The content of each ingredient in the powder is shown in weight percent.

Purchased for the exclusive use of nofirst nolast (unknown)
From: SCC Media Library & Resource Center (library.scconline.org)
which consists of a spherical nylon as the core powder, the surface of which is uniformly covered with fine-particled zinc oxide. To 80 parts of nylon 12 powder (average particle size 6.6 μm, Nikko Rica Corp.), 20 parts of zinc oxide (average particle size 0.1 μm, Sakai Kagaku Kogyo) were added and mixed together in a Henschel mixer (Mitsui Miike Machinery Co., Ltd., Model 10B) for five minutes. The mixture was placed inside a tumbling mill (Retsch, Model S2) charged with alumina balls (0.8–30 mm i.d.), where it was mixed and compressed for 30 to 60 minutes.

EFFICACY OF QUENCHERS FORMULATED WITH HYBRID POWDER ON FOOT ODOR

Efficacy of body odor quenchers in the form of aerosols was assessed. Four quenchers, whose powder parts formulae are shown in Table I, were prepared for the assessment. Our panel consisted of six subjects (six men, 20 to 30 years old) with fairly strong foot odor, all from our laboratory. For each formula the assessment was carried out in the following manner.

First of all, the six subjects self-evaluated their right and left feet, based on a five-step foot odor intensity: 0, no foot odor; 1, faint foot odor; 2, medium foot odor; 3, strong foot odor; 4, extremely strong foot odor.

After evaluation, the quencher was applied to the foot possessing the stronger foot odor, and the other foot was left untreated. The quencher was always applied only on the former foot during the assessment, and the latter was left as control. The quencher was applied twice a day for two days. Foot odor was self-evaluated just before applying the quencher. An example of such an assessment procedure is shown in Figure 3. As shown

8/9 9:00 selection of foot for applying the quencher
 (olfactory evaluation)

 first application

8/9 13:00 olfactory evaluation

 second application

8/10 9:00 olfactory evaluation

 third application

8/10 13:00 olfactory evaluation

 fourth application

8/10 16:00 olfactory evaluation

Figure 3. Assessment procedure for body odor quenchers on foot odor. The assessment lasts for two days during which four applications and five evaluations are accomplished.

Purchased for the exclusive use of nofirst nolast (unknown)
From: SCC Media Library & Resource Center (library.scconline.org)
in the figure, foot odor was evaluated five times during an assessment. During the two days, the subjects were allowed to bathe but not permitted to use soaps or deodorants of any kind. The same assessment was carried out on all four formulae.

EFFICACY OF QUENCHERS FORMULATED WITH HYBRID POWDER ON AXILLARY ODOR

Efficacy of quenchers formulated with hybrid powder was assessed on axillary odor as well. A panel of 20 patients (three men, 17 women, average age 30), suffering from strong axillary odor, was selected from hospitals and universities in Japan. Double-blind trials were made on body odor quencher A (a conventional formula containing aluminum chlorhydrate as active ingredient + hybrid powder, equivalent to formula 2) and body odor quencher B (a conventional formula containing only aluminum chlorhydrate as active ingredient, equivalent to formula 4). Trained olfactory assessors evaluated the efficacy of A and B as listed below:

- Efficacy of A >> efficacy of B
- Efficacy of A > efficacy of B
- Efficacy of A = efficacy of B
- Efficacy of A < efficacy of B
- Efficacy of A << efficacy of B

Quencher A was applied to the right axilla and B to the left, or vice versa. The quenchers were applied twice a day, once in the morning and once in the afternoon, for seven consecutive days during which the patients could bathe, but the usage of neither soaps nor deodorants was permitted. The axillae of the patients were evaluated by the assessors on the seventh day. The identity of A and B was kept blind to both the patient and the assessor, and only the supervisor who finally collected the results could distinguish the two formulae.

RESULTS AND DISCUSSION

HEADSPACE GC ANALYSIS FOR EVALUATING QUENCHING ACTIVES

If we keep in mind the quenching mechanism we are proposing here, the candidates under investigation should contain metallic elements, preferably with a mild alkaline effect, and needless to mention, must be safe on human skin. Several possible candidates to fulfill the above demands were analyzed by headspace GC. Isovaleric acid consumption values of the candidates are illustrated in Figure 4. Fine-particled zinc oxide was found to be most efficacious, followed by hydroxy apatite, known as a peptide adsorber. The most widely used antiperspirant ingredient, aluminum chlorhydrate, was superior compared to talc, which showed almost no effect at all, but was significantly ineffective in comparison with zinc oxide. The quenching mechanism of zinc oxide can be estimated as shown below:

\[2C_4H_9COOH + ZnO \rightarrow (C_4H_9COO)_2Zn + H_2O \]

CONFIRMATION OF THE QUENCHING MECHANISM BY FT-IR

The FT-IR spectrum of zinc oxide-treated short-chain fatty acid aqueous solution is shown in Figure 5. The strong absorption band observed near 1600 cm\(^{-1}\) can be as-
signed as the carboxylate anion of short-chain fatty acid zinc salt. The absence of an absorption at 1700 cm$^{-1}$, which should be observed in the presence of free fatty acids, convinced us that the expected reaction as shown below was actually proceeding:

$$2\text{RCOOH} + \text{ZnO} \rightarrow (\text{RCOO})_2\text{Zn} + \text{H}_2\text{O}$$

(R: alkyl group)

Figure 4. Isovaleric acid consumption values of various ingredients. The larger the value, the greater the efficacy of the ingredient to quench isovaleric acid odor.
FORMATION OF A ZINC OXIDE/NYLON HYBRID POWDER

As can easily be predicted from the microscopic photograph shown in Figure 6, spherical nylon powder has a smooth texture. A photograph of a composite or a hybrid powder of zinc oxide and nylon powder is shown in Figure 7. A uniform layer of zinc oxide is clearly observed around the nylon core powder. Some attractive characteristics of the hybrid powder, in comparison with zinc oxide alone, are summarized below.

1. Increases the surface area of zinc oxide
2. Improves the rough texture of zinc oxide
3. Prevents aggregation of zinc oxide
4. The specific gravity of the hybrid powder is controllable
5. Improves the transparency of zinc oxide

By forming a hybrid powder, the surface area of zinc oxide should increase considerably, and hence it should react faster with short-chain fatty acids. The texture of zinc oxide was improved so much that it was indistinguishable from nylon powder alone. Since zinc oxide is uniformly wrapped around nylon powder, the particle size of the hybrid powder should be almost identical with that of nylon powder. This should prevent the clogging of aerosols considerably. As mentioned above, the specific gravity of the hybrid powder can be controlled by changing the amount of zinc oxide to be coated on top of the nylon powder. The optimum amount to form a single layer was found to be

Figure 5. FT-IR spectrum of zinc oxide-treated short-chain fatty acids. The strong absorption band around 1600 cm\(^{-1}\) is assigned as the carboxylate anion of short-chain fatty acid zinc salt. The absence of an absorption band at 1700 cm\(^{-1}\) shows that no free short-chain fatty acids are present.
around 20%. Amounts above 20% would overload the nylon surface, which consequently would result in rough texture, and amounts below 20% would leave some portions of the surface naked. When applied to the skin, the hybrid powder was more transparent than zinc oxide alone.

EFFICACY OF QUENCHERS FORMULATED WITH HYBRID POWDER ON FOOT ODOR

Odor assessment results of formulae 1 and 4 are shown in Figure 8 and Figure 9, respectively. The horizontal axis is taken as the time in hours after the first application. The vertical axis is taken as the mean foot odor intensity self-evaluated by the subjects. Out of the four formulae, formula 1 was the most efficacious, due to the high content of zinc oxide, but its texture was the worst, and several aerosols were clogged by it. The efficacy of formula 4, i.e., a conventional formula with no zinc oxide, was the lowest. Formula 2, containing 30% of hybrid powder, was comparable in efficacy to formula 1 but with a better texture. Formula 3 was found to be more effective than formula 4 but
not as much as formula 2, due to the amount of hybrid powder. No aerosol clogging was reported for formulae 2, 3, and 4. Consequently, the formula of choice is formula 2.

Figure 7. Photomicrograph of hybrid powder. A uniform layer of zinc oxide on the surface of nylon powder is observed.

Figure 8. Odor assessment result of formula 1 on foot odor. Foot odor of the applied foot is suppressed in comparison with that of the control foot.
Efficacy of Quenchers Formulated with Hybrid Powder on Axillary Odor

The results of the double-blind trials are shown in Table II. The total number of subjects was 18, since two subjects resigned during the assessment. Hybrid powder containing quencher A showed a statistically significant deodorant effect over quencher B, a conventional formula. Hybrid powder-formulated quenchers were proven to be efficacious not only on foot odor but also on axillary odor.

Conclusions

Short-chain fatty acids have been identified not only in the foot and the axilla but also in other sites of the human body such as the vagina (3), hair and scalp (4), and physio-

Table II
Double-Blind Assessment Results of Quenchers A and B

<table>
<thead>
<tr>
<th>Comparison of efficacy</th>
<th>Evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>A ≫ B</td>
<td>4</td>
</tr>
<tr>
<td>A > B</td>
<td>8</td>
</tr>
<tr>
<td>A = B</td>
<td>1</td>
</tr>
<tr>
<td>A < B</td>
<td>4</td>
</tr>
<tr>
<td>A ≪ B</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>18</td>
</tr>
</tbody>
</table>

Wilcoxon sign-rank test evaluation: $U_o = 1.7328$; $P_o = 0.0831$. **

Figure 9. Odor assessment result of formula 4 on foot odor. Foot odor of the applied foot is only slightly suppressed in comparison with that of the control foot.
logical fluids (5). Along with low-molecular-weight compounds containing nitrogen and sulfur, short-chain fatty acids seem to comprise a considerable portion of human body malodors.

The best method to efficiently eliminate short-chain fatty acids was considered to be through chemical reaction converting them into their corresponding odorless metallic salts. Out of the several chosen candidates, zinc oxide was found to be most suitable. Taking into account the several shortcomings that zinc oxide possesses, we have developed a hybrid powder consisting of a spherical nylon resin as the core whose surface is uniformly covered with fine particles of zinc oxide. This hybrid powder overcomes zinc oxide's drawbacks, especially those encountered upon formulating it into deodorant products, without sacrificing any of its deodorizing power. The body odor quenchers formulated with hybrid powder were assessed on subjects with strong foot and axillary odor, and were found to be more efficacious in eliminating malodors as compared with conventional antiperspirants and deodorants.

The hybrid powder body odor quencher is a novel deodorizer that theoretically not only prevents the generation of body malodor as conventional products do, but also chemically "quenches" body malodor once formed from short-chain fatty acids. This concept is applicable to body odors from regions other than the foot and axilla, provided that the key odor components are short-chain fatty acids.

REFERENCES

Synergism of preservative system components:
Use of the survival curve slope method to demonstrate anti-Pseudomonas synergy of methyl paraben and acrylic acid homopolymer/copolymers in vitro

Received July 2, 1989.

Synopsis
The survival curve slope method allows determination of synergy in multicomponent systems when the slope (i.e., rate of death of the population of test organisms) is a larger negative number than the sum of the slopes of each of the components. This method was used to demonstrate anti-Pseudomonas synergy of methyl paraben (MP) and acrylic acid homopolymer/copolymers in vitro.

Preservative efficacy testing of nonionic lotions containing 0.2% MP and 0.2% acrylic acid homopolymer/copolymers revealed anti-Pseudomonas synergy against P. aeruginosa, P. putida, P. fluorescens, and P. stutzeri. Addition of 0.1% CaCl₂ to the lotion caused significant increases in D-values and eliminated the anti-Pseudomonas synergy.

Similar patterns of synergy were observed in lotions containing 0.2% MP and 0.2% carbomer 934, 941 or acrylates/C10-30 alkyl acrylate cross polymer (1342) and in tap water containing 0.2% MP and 0.01% Na₂EDTA. The anti-Pseudomonas synergy observed with MP and neutralized acrylic acid homopolymer/copolymers is probably related to chelation of divalent metal ions and similar to permeabilization synergy reported for preservative action by EDTA.

INTRODUCTION
Preservative efficacy testing is performed to determine the type and minimum effective concentrations of preservatives required for products to meet acceptance criteria (1). Testing is needed for each product because the physicochemical composition of a formula may enhance or reduce the antimicrobial effectiveness of preservatives.

When designing the preservative system of a product (2,3), it is desirable to select compounds that enhance the antibacterial action of the preservative system. Synergism is observed when the effect produced by the combination of components is greater than the sum of the effects of each component taken separately. Synergy of antimicrobial preservatives has been reported by several workers (4–7).

*Current Address: Neutrogena Corporation, 5755 West 96th Street, Los Angeles, CA 90045.
During testing with the linear regression method (8), we noticed that *Pseudomonas aeruginosa* was inactivated more rapidly in nonionic emulsion systems containing carbomer 941 than in products that did not contain this material. By thoroughly studying this system, we developed a method of demonstrating synergy of preservative system components that uses the rates of inactivation of test organisms determined by the linear regression method.

The most desirable outcome of testing antimicrobial preservatives for synergy is finding the combination that will allow the use of fewer and/or reduced concentrations of preservatives in consumer products. The use of a preservative system that has synergistic action is of practical significance because it may help reduce the cost of the product and the irritation or sensitization potential of the formula.

EXPERIMENTAL

TEST ORGANISMS

The strains of *Pseudomonas* used in this study were received directly from the American Type Culture Collection (ATCC) and consisted of *P. aeruginosa* ATCC strains 9027, 9721, 10145, and 27853; *P. cepacia* ATCC strains 13945 and 25416; *P. fluorescens* ATCC 13525; *P. putida* (Biotype A) ATCC 12633; *P. stutzeri* ATCC 17588; and *Pseudomonas* sp. 9230. *P. aeruginosa* 9027 routinely is used in antimicrobial preservative testing (1), and *P. aeruginosa* 27853 is a standardized strain for antibiotic susceptibility testing. Multiple strains of species of *P. aeruginosa* and *P. cepacia* were available, and consequently, *P. aeruginosa* 9027 and *P. cepacia* 13945 were used unless other strains are indicated. *Bacillus cereus* ATCC 11778 was obtained directly from the ATCC. *E. coli* ATCC 8739 was obtained from Hill Top Biolabs, Inc. *Staphylococcus aureus* ATCC 6538 (FDA 209 strain) and *Bacillus* sp. were taken from the Jergens culture collection. The cultures were maintained by weekly transfer on Tryptic Soy Agar (TSA). All test organisms were grown on TSA with 0.07% lecithin and 0.5% Tween 80 (TSALT) in 150-mm Petri dishes for 24 hr prior to use in preservative efficacy testing. *S. aureus*, *E. coli*, *Bacillus* sp., and *B. cereus* were incubated at 37°C. All *Pseudomonas* test organisms were incubated at 30°C for 24 hr in preparation for preservative efficacy testing. All Petri dishes prepared from samples for determination of aerobic plate counts (APCs) were incubated for 48 hr at 37°C (except for those prepared from samples challenged with both *P. cepacia* strains and *P. fluorescens*, which were incubated for 48 hr at 30°C).

TEST SAMPLES

The test samples used in this study included a nonionic o/w lotion (Table I). The lotion was prepared as follows: Parts A, B, and C were heated to 70°C. Part A was added to part C with continuous mixing. Part B was added after 5 min, and mixing was continued as the batch was cooled to ambient temperature. This lotion was selected for studying the effects of emulsion pH, [polyacrylic acid resin (934 or 941) or acrylic acid copolymer (1342), B.F. Goodrich] neutralizing agent [TEA 99% or 85% (Dow Chemical), TEA 99% (Union Carbide), or NaOH], and CaCl₂, on antimicrobial activity. The pH readings were adjusted to the stated value (± 0.1 pH unit).
Table I
Nonionic Lotion Formula

<table>
<thead>
<tr>
<th>Part</th>
<th>Formula components</th>
<th>Weight (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Mineral oil</td>
<td>7.50</td>
</tr>
<tr>
<td></td>
<td>Glyceryl stearate and PEG 100 stearate</td>
<td>3.50</td>
</tr>
<tr>
<td>B</td>
<td>Water</td>
<td>30.00</td>
</tr>
<tr>
<td></td>
<td>Acrylic acid homopolymer/copolymer</td>
<td>0.20</td>
</tr>
<tr>
<td></td>
<td>TEA 99%*</td>
<td>0.30</td>
</tr>
<tr>
<td>C</td>
<td>Methyl paraben</td>
<td>0.20</td>
</tr>
<tr>
<td></td>
<td>Water</td>
<td>58.30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100.00</td>
</tr>
</tbody>
</table>

* pH of lotion adjusted to pH 7.0 (± 0.1) by addition of TEA.

A batch of nonionic lotion was prepared and brought up to 99.9% of the final weight by the addition of water after cooling. Approximately 60 min before use in preservative efficacy testing, the lotion with 0.1% CaCl₂ was prepared by adding 0.5 g CaCl₂ to 499.5 g of the lotion base, with several minutes of mixing. The control was prepared by adding 0.1% filter-sterilized deionized water to the remainder of the batch of lotion, with mixing. The pH of the lotion with 0.1% CaCl₂ was pH 5.7 and had a water-thin viscosity. The pH of the control lotion was pH 6.8, and the viscosity of this lotion was not changed noticeably by the addition of water.

Aqueous samples of 0.2% MP, 0.01% Na₂EDTA, 0.2% MP + 0.01% Na₂EDTA, and deionized water (control) were prepared for sterilization time (ST) determinations and were filter-sterilized by passing 5-ml aliquots of each solution through a 0.45-μm filter in a Sweeny-type filter holder. Similarly, aliquots of stock solutions of phenoxyethanol (P) and Nipastat (N), which is a 50:15:10:20 mixture of methyl-, ethyl-, propyl-, and butyl-paraben, were added to sterile saline to give final concentrations of 0, 0.1, 0.5, and 1.0% P, and 0, 0.005, 0.01, 0.05, and 0.10% N.

TEST PROCEDURES

Preservative efficacy tests were performed using saline suspensions from surface growth of each test organism after incubation for 24 hr on TSALT, as described above. A loopful of growth was suspended in 5 ml of saline to give about 10⁷ organisms/ml, and 0.1 ml of the saline suspension of each test organism was added to separate 50-ml portions of each test sample in a 100-ml screw-capped bottle. Samples were taken at designated times; APCs were performed using Letheen Broth with 0.01% (v/v) Triton X-100 diluent and TSALT as the recovery system; the Petri dishes were incubated at 37°C for all test organisms (except for both P. cepacia strains and P. fluorescens, which were incubated at 30°C); and D-values were determined by taking the negative reciprocal of the slope of the survivor curve for each test organism in each test sample, as described in an earlier report (8). All tests were performed at least in duplicate, unless otherwise stated.
A modified preservative efficacy test was used to determine sterilization times (STs) for the test organisms in aqueous samples. The inocula were prepared as above and added to solutions of MP, Na₂EDTA, MP + Na₂EDTA, and deionized water (control). The contents of the tubes were mixed using a Vortex Genie Mixer, and samples were taken at 0, 2, 4, 24, and 48 hr by inserting a sterile swab into the liquid in each tube. A separate Petri dish containing TSALT was streaked with each swab. The Petri dishes were incubated for 48 hr at 30° or 37°C, depending on the test organism, as described above. The Petri dishes were examined for growth of the test organisms, and the ST was determined to be the first time at which test organisms were not recovered from the test solution.

The ST and the concentration of organisms in the inoculum were used to calculate the slope of the survivor curve, correcting for the volume change that occurs when the inoculum is added to the test system. In these studies, the concentration of organisms in test tube samples was 1/100th the concentration in the inoculum because 0.1 ml was added to 10-ml solution in each test tube. D-values were determined by taking the negative reciprocal of the slope of each survivor curve (8). Where no endpoint was reached in the ST experiments, because the test organisms were still alive at 48 hr, the minimum possible ST (MPST) was used. The MPST was defined as a time longer than the last time at which test organisms were recovered (i.e., >48 hr). The MPST and the concentration of the organisms in the inoculum were used to construct a virtual survival curve. The maximum possible slope (MPSlope) of the virtual survivor curve and the corresponding minimum possible D-value (MPD-value) were calculated.

Synergism was observed when the slope of the survivor curve obtained with the combined components was a larger negative number than the sum of the slopes (or MPSlopes) for each of the components determined separately.

Duplicate samples of tap water; tap water containing 0.01% Na₂EDTA, adjusted to pH 7.0 by the addition of one drop of TEA; and deionized water were tested for water hardness by the method of Betz Laboratories (9).

A 0.1% 1342 dispersion was prepared by slowly adding 0.1 g 1342 to 99.9 g tap water with vigorous agitation. This dispersion was stirred for 2 hr at room temperature to allow hydration of the 1342. The beakers containing tap water and the 1342 dispersion were covered with aluminum foil and were allowed to stand, undisturbed, at room temperature for 3 days. The dispersion settled to about ⅓ of the liquid level in the beaker after this period. The water layer was decanted to give 1342-treated tap water. Duplicate samples of tap water, 1342-treated tap water, and freshly drawn deionized water were assayed for hardness (9).

Mean D-values and standard deviation (s) were calculated. Statistically significant differences between mean D-values of duplicate experiments were determined by a two-
The survivor curves for *P. aeruginosa* in 0.2% MP adjusted to pH 7.0 with TEA or NaOH, with and without 0.2% 1342, are shown in Figure 1. The system with 1342, MP, and TEA inactivated *P. aeruginosa* so quickly that the APC was 600/ml immediately after inoculation. No organisms were recovered at 2 hr or thereafter in this system. The estimated D-value for *P. aeruginosa* was <0.006 hr, based on the APC of the inoculum and the APC immediately after inoculation. This is indicated by the dashed line in the figure. The system containing MP and 1342 neutralized with NaOH had an initial APC of 4.3 × 10⁵/ml and a D-value of 0.9 hr. Linear regression analysis gave an estimated ST of slightly greater than 5 hr. Solutions of MP and 0.16% NaOH or 0.6% TEA (the amounts of these bases required to adjust the pH to 7.0) did not kill *P. aeruginosa* during the 24-hr test period. This initial experiment was performed once using duplicate Petri dishes.

The results in Table II show the preservative efficacy test results of the nonionic lotion challenged with *S. aureus*, *B. cereus*, *E. coli*, and different species of *Pseudomonas*. Most species of *Pseudomonas* were inactivated rapidly, with D-values of ≤1.1 hr. The preservative system was much less effective against *S. aureus*, *B. cereus*, and *E. coli* than against most species of *Pseudomonas* tested. *Pseudomonas* sp., *P. cepacia* 13945, and *P. cepacia* 25416 were more resistant than the other pseudomonads to the anti-*Pseudomonas* action.
Table II
Preservative Efficacy Test Results Obtained With Nonionic Lotion Containing 0.2% MP and 0.2% 1342 Challenged With S. aureus, B. cereus, E. coli, and Several Different Species of Pseudomonas

<table>
<thead>
<tr>
<th>Test organism</th>
<th>D-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>P. aeruginosa 9027</td>
<td>0.9 (0.3)</td>
</tr>
<tr>
<td>P. aeruginosa 10145</td>
<td>1.1 (0.1)</td>
</tr>
<tr>
<td>P. cepacia 13945</td>
<td>24* (4)</td>
</tr>
<tr>
<td>P. cepacia 25416</td>
<td>11* (0)</td>
</tr>
<tr>
<td>P. fluorescens 13525</td>
<td>1.1 (0.9)</td>
</tr>
<tr>
<td>P. putida 12633</td>
<td>1.0 (0.6)</td>
</tr>
<tr>
<td>P. stutzeri 17588</td>
<td>0.5 (0)</td>
</tr>
<tr>
<td>Pseudomonas sp. 9230</td>
<td>9.3 (0.9)</td>
</tr>
<tr>
<td>S. aureus 6538</td>
<td>26* (0)</td>
</tr>
<tr>
<td>B. cereus 11778</td>
<td>7.2 (0.4)</td>
</tr>
<tr>
<td>E. coli 8739</td>
<td>78* (28)</td>
</tr>
</tbody>
</table>

Table values are mean D-values in hours, with the standard deviations in parentheses. * D-values over 10 hr were rounded to the nearest whole number.

of the preservative system, as indicated by the larger D-values obtained with these organisms.

The D-values and slopes of the survivor curves obtained with P. aeruginosa, P. cepacia, P. fluorescens, and P. putida in the nonionic lotion with MP; with 934, 941, or 1342 and no MP; and with MP and 934, 941, or 1342 are presented in Table III. All lotions were adjusted to pH 7.0 with TEA. The D-values were much smaller (i.e., the rates of death of the test organisms were much faster) in all lotions containing 934, 941, or 1342 with MP than in lotions containing only MP or acrylic acid homopolymer/copolymer. The dramatic anti-Pseudomonas effect obtained with MP + 934, in comparison with MP or 934, is illustrated in Figure 2.

In this work, a synergistic effect in multicomponent preservative systems was defined as one in which the slope (i.e., rate of death of the population of test organisms) was a larger negative number in the presence of two or more agents than the sum of the slopes in the presence of each agent by itself. Thus, a synergistic effect was obtained when the slope in the presence of the MP and acrylic acid homopolymer/copolymer was a larger negative number than the sum of the slopes in the presence of MP (without 934, 941, or 1342) and 934, 941, or 1342 (without MP). The test systems that produced synergistic anti-Pseudomonas activity are indicated by an asterisk in Table III. All test systems, except the 1342/MP system challenged with P. cepacia, exhibited synergistic antibacterial activity. The antibacterial action of MP and 1342 for P. cepacia was additive in this test lotion.

The results of preservative efficacy testing of the nonionic lotion containing 0.2% 1342 and 0.2% MP, with and without 0.1% CaCl₂, are shown in Table IV. The addition of CaCl₂ to the lotion significantly increased the D-values and eliminated the anti-Pseudomonas synergy for P. aeruginosa, P. fluorescens, and P. putida. The CaCl₂ significantly decreased the D-values for P. cepacia (Table IV). No attempt was made to demonstrate synergy or antagonism in the experiments done with CaCl₂ test systems.

Addition of CaCl₂ to the lotion decreased the viscosity to a water-thin consistency and decreased the pH from 6.8 to 5.7, but no phase separation was apparent during the

Purchased for the exclusive use of nofirst nolast (unknown)
From: SCC Media Library & Resource Center (library.scconline.org)
Table III
Synergism of MP and Polyacrylic Acid Homopolymer/Copolymer: Preservative Efficacy Test Results in Nonionic Lotion Containing 0.2% MP; 0.2% 934, 941, or 1342; and 0.2% MP + 0.2% 934, 941, or 1342, Challenged With P. aeruginosa 9027, P. cepacia 13945, P. fluorescens 13525, and P. putida 12633

934 Test system:

<table>
<thead>
<tr>
<th>Test organism</th>
<th>MP</th>
<th>934</th>
<th>MP + 934</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>D-value</td>
<td>Slope</td>
<td>D-value</td>
</tr>
<tr>
<td>P. aeruginosa</td>
<td>6.3</td>
<td>-0.16</td>
<td>25</td>
</tr>
<tr>
<td>P. cepacia</td>
<td>52</td>
<td>-0.02</td>
<td>35</td>
</tr>
<tr>
<td>P. fluorescens</td>
<td>31</td>
<td>-0.03</td>
<td>64</td>
</tr>
<tr>
<td>P. putida</td>
<td>34</td>
<td>-0.03</td>
<td>9.3</td>
</tr>
</tbody>
</table>

941 Test system:

<table>
<thead>
<tr>
<th>Test organism</th>
<th>MP</th>
<th>941</th>
<th>MP + 941</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>D-value</td>
<td>Slope</td>
<td>D-value</td>
</tr>
<tr>
<td>P. aeruginosa</td>
<td>6.3</td>
<td>-0.16</td>
<td>390</td>
</tr>
<tr>
<td>P. cepacia</td>
<td>52</td>
<td>-0.02</td>
<td>45</td>
</tr>
<tr>
<td>P. fluorescens</td>
<td>31</td>
<td>-0.03</td>
<td>400</td>
</tr>
<tr>
<td>P. putida</td>
<td>34</td>
<td>-0.03</td>
<td>8</td>
</tr>
</tbody>
</table>

1342 Test system:

<table>
<thead>
<tr>
<th>Test organism</th>
<th>MP</th>
<th>1342</th>
<th>MP + 1342</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>D-value</td>
<td>Slope</td>
<td>D-value</td>
</tr>
<tr>
<td>P. aeruginosa</td>
<td>6.3</td>
<td>-0.16</td>
<td>60</td>
</tr>
<tr>
<td>P. cepacia</td>
<td>52</td>
<td>-0.02</td>
<td>48</td>
</tr>
<tr>
<td>P. fluorescens</td>
<td>31</td>
<td>-0.05</td>
<td>110</td>
</tr>
<tr>
<td>P. putida</td>
<td>34</td>
<td>-0.05</td>
<td>16</td>
</tr>
</tbody>
</table>

Table values are D-values in hours and the corresponding slopes of the survivor curves in hours⁻¹.
* Synergistic anti-Pseudomonas activity is indicated by a larger negative slope with MP + acrylic acid derivative than with the sum of slopes obtained with MP and polyacrylic acid homopolymer/copolymer.

course of the preservative testing. A 0.1% solution of unneutralized 1342 in tap water had moderate chelating ability. The mean hardness of duplicate tap water samples was 109 (s = 0.71) ppm as CaCO₃, and the mean hardness of duplicate 0.1% 1342 solutions was 75 (s = 1.5) ppm as CaCO₃. These means were significantly different (p < 0.01).

The STs of the test organisms in MP, Na₂EDTA, and MP + Na₂EDTA solutions were determined. The 0.2% MP solutions were not rapidly bacteriocidal because all test organisms (including S. aureus and E. coli) were viable at 24 hr. P. cepacia 13945 and P. putida were not recovered at 48 hr (Table V). Similarly, all but two of the pseudomonad test organisms were recovered from the Na₂EDTA solutions at 48 hr. In contrast, the combination of 0.01% Na₂EDTA + 0.2% MP showed marked anti-Pseudomonas action, because all test organisms, except P. cepacia 13945 and 25416 and Pseudomonas sp. 9230, had STs <4 hr. P. cepacia 13945 was the only pseudomonad recovered at the 24-hr sampling. S. aureus and E. coli had STs >48 hr. These results parallel the results obtained in Table II, in which both P. cepacia strains and Pseudomonas sp. were found to
Figure 2. Comparison of D-values for *P. aeruginosa* 9027, *P. cepacia* 13945, *P. fluorescens* 13525, and *P. putida* 12633, determined by preservative efficacy testing of the nonionic lotion containing 0.2% MP, 0.2% 934, or both 0.2% MP and 0.2% 934.

be much more resistant to the preservative system of the lotion containing 0.2% MP + 0.2% 1342. Even though the *P. stutzeri* inoculum contained 1.7×10^7/ml, this organism was not recovered from the initial sampling in the MP + Na$_2$EDTA solution. Similarly, *P. stutzeri* was inactivated more rapidly than all other test organisms in the lotion containing MP + 1342 (Table II). Hardness analyses of tap water, tap water containing 0.01% Na$_2$EDTA, and deionized water gave mean hardness values of 137 (s = 5.0), 109 (s = 1.4), and 20 (s = 14) ppm CaCO$_3$, respectively. These means were significantly different ($p < 0.05$).

The STs obtained in Table V were used to calculate survivor curve slopes and D-values and to demonstrate synergy for all *Pseudomonas* test organisms in 0.1% MP + 0.01% Na$_2$EDTA solutions, except for *P. cepacia* 13945 (Table VI). It was possible to calculate a slope and D-value where STs were known, as in the case for *P. cepacia* 13945 in 0.2%

Table IV

<table>
<thead>
<tr>
<th>Test organism</th>
<th>Lotion</th>
<th>Lotion with CaCl$_2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>P. aeruginosa</td>
<td>1.8 (0.8)</td>
<td>10* (0)</td>
</tr>
<tr>
<td>P. cepacia</td>
<td>90* (16)</td>
<td>13* (0.7)</td>
</tr>
<tr>
<td>P. fluorescens</td>
<td>2.0 (0.07)</td>
<td>8.5 (0.4)</td>
</tr>
<tr>
<td>P. putida</td>
<td>2.2 (0.28)</td>
<td>11* (1.0)</td>
</tr>
</tbody>
</table>

Table values are mean D-values from duplicate experiments, with standard deviations in parentheses.

* D-values over 10 hr were rounded to the nearest whole number.

Purchased for the exclusive use of nofirst nolast (unknown)

From: SCC Media Library & Resource Center (library.scconline.org)
Table V
Determination of Sterilization Times of Several *Pseudomonas* Species in MP, Na₂EDTA, and MP + Na₂EDTA Solutions

<table>
<thead>
<tr>
<th>0.2% MP solutions:</th>
<th>Test organism</th>
<th>0 hr</th>
<th>2 hr</th>
<th>4 hr</th>
<th>24 hr</th>
<th>48 hr</th>
<th>ST</th>
<th>MPST</th>
</tr>
</thead>
<tbody>
<tr>
<td>P. aeruginosa 9027</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>—</td>
<td>>48</td>
</tr>
<tr>
<td>P. aeruginosa 27853</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>—</td>
<td>>48</td>
</tr>
<tr>
<td>P. aeruginosa 9721</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>—</td>
<td>>48</td>
</tr>
<tr>
<td>P. aeruginosa 10145</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>—</td>
<td>>48</td>
</tr>
<tr>
<td>P. cepacia 13945</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>—</td>
<td>48</td>
<td>—</td>
</tr>
<tr>
<td>P. cepacia 25416</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>—</td>
<td>48</td>
<td>—</td>
</tr>
<tr>
<td>P. fluorescens 13525</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+[2]</td>
<td>—</td>
<td>>48</td>
</tr>
<tr>
<td>P. putida 12633</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>—</td>
<td>48</td>
<td>—</td>
</tr>
<tr>
<td>P. putida 17588</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>—</td>
<td>48</td>
<td>—</td>
</tr>
<tr>
<td>P. stutzeri 9230</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>—</td>
<td>48</td>
<td>—</td>
</tr>
<tr>
<td>S. aureus 6538</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>—</td>
<td>48</td>
<td>—</td>
</tr>
<tr>
<td>E. coli 8739</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>—</td>
<td>48</td>
<td>—</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>0.01% Na₂EDTA solutions:</th>
<th>Test organism</th>
<th>0 hr</th>
<th>2 hr</th>
<th>4 hr</th>
<th>24 hr</th>
<th>48 hr</th>
<th>ST</th>
<th>MPST</th>
</tr>
</thead>
<tbody>
<tr>
<td>P. aeruginosa 9027</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>—</td>
<td>>48</td>
</tr>
<tr>
<td>P. aeruginosa 27853</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>—</td>
<td>>48</td>
</tr>
<tr>
<td>P. aeruginosa 9721</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>—</td>
<td>>48</td>
</tr>
<tr>
<td>P. aeruginosa 10145</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>—</td>
<td>>48</td>
</tr>
<tr>
<td>P. cepacia 13945</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>—</td>
<td>>48</td>
</tr>
<tr>
<td>P. cepacia 25416</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>—</td>
<td>>48</td>
</tr>
<tr>
<td>P. fluorescens 13525</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>—</td>
<td>>48</td>
</tr>
<tr>
<td>P. putida 12633</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>—</td>
<td>>48</td>
</tr>
<tr>
<td>P. putida 17588</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>—</td>
<td>>48</td>
</tr>
<tr>
<td>P. stutzeri 9230</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>—</td>
<td>>48</td>
</tr>
<tr>
<td>S. aureus 6538</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>—</td>
<td>>48</td>
</tr>
<tr>
<td>E. coli 8739</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>—</td>
<td>>48</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>0.2% MP + 0.01% Na₂EDTA solution:</th>
<th>Test organism</th>
<th>0 hr</th>
<th>2 hr</th>
<th>4 hr</th>
<th>24 hr</th>
<th>48 hr</th>
<th>ST</th>
<th>MPST</th>
</tr>
</thead>
<tbody>
<tr>
<td>P. aeruginosa 9027</td>
<td>+</td>
<td>+</td>
<td>[s]</td>
<td>—</td>
<td>—</td>
<td>4</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>P. aeruginosa 27853</td>
<td>+</td>
<td>+</td>
<td>[s]</td>
<td>+</td>
<td>[2]</td>
<td>—</td>
<td>24</td>
<td>—</td>
</tr>
<tr>
<td>P. aeruginosa 9721</td>
<td>+</td>
<td>+</td>
<td>[s]</td>
<td>—</td>
<td>—</td>
<td>4</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>P. aeruginosa 10145</td>
<td>+</td>
<td>+</td>
<td>[1]</td>
<td>—</td>
<td>—</td>
<td>4</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>P. cepacia 13945</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>—</td>
<td>48</td>
<td>—</td>
</tr>
<tr>
<td>P. cepacia 25416</td>
<td>+</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>2</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>P. fluorescens 13525</td>
<td>+</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>2</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>P. putida 12633</td>
<td>+</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>2</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>P. putida 17588</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>0.1*</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Pseudomonas sp. 9230</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>—</td>
<td>24</td>
<td>—</td>
</tr>
<tr>
<td>S. aureus 6538</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>—</td>
<td>24</td>
<td>—</td>
</tr>
<tr>
<td>E. coli 8739</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>—</td>
<td>24</td>
<td>—</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Deionized water (control):</th>
<th>Test organism</th>
<th>0 hr</th>
<th>2 hr</th>
<th>4 hr</th>
<th>24 hr</th>
<th>48 hr</th>
<th>ST</th>
<th>MPST</th>
</tr>
</thead>
<tbody>
<tr>
<td>P. aeruginosa 9027</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>—</td>
<td>>48</td>
</tr>
<tr>
<td>P. aeruginosa 27853</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>—</td>
<td>>48</td>
</tr>
<tr>
<td>P. aeruginosa 9721</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>—</td>
<td>>48</td>
</tr>
<tr>
<td>P. aeruginosa 10145</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>—</td>
<td>>48</td>
</tr>
</tbody>
</table>

Purchased for the exclusive use of nofirst nolast (unknown)
From: SCC Media Library & Resource Center (library.scconline.org)
Table V (Continued)

Deionized water (control):

<table>
<thead>
<tr>
<th>Test organism</th>
<th>0 hr</th>
<th>2 hr</th>
<th>4 hr</th>
<th>24 hr</th>
<th>48 hr</th>
<th>ST</th>
<th>MPST</th>
</tr>
</thead>
<tbody>
<tr>
<td>P. cepacia 13945</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>--</td>
<td>>48</td>
</tr>
<tr>
<td>P. cepacia 25416</td>
<td>+</td>
<td>+</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>>48</td>
</tr>
<tr>
<td>P. fluorescens 13525</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>--</td>
<td>>48</td>
</tr>
<tr>
<td>P. putida 12633</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>--</td>
<td>>48</td>
</tr>
<tr>
<td>P. stutzeri 17588</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>--</td>
<td>>48</td>
</tr>
<tr>
<td>Pseudomonas sp. 9230</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>--</td>
<td>>48</td>
</tr>
<tr>
<td>S. aureus 6538</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>--</td>
<td>>48</td>
</tr>
<tr>
<td>E. coli 8739</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>--</td>
<td>>48</td>
</tr>
</tbody>
</table>

Explanation of symbols: +, growth on TSALT; --, no growth on TSALT; numbers in brackets (i.e., [1] and [2]) indicate the number of colonies growing on TSALT; [s] is used to designate scant growth (i.e., 8–15 colonies growing on TSALT). ST, sterilization time in hr. MPST, minimum possible sterilization time in hr.

* P. stutzeri was not recovered, so ST was set at 0.1 hr because this is the approximate time required for setting up the series of samples after inoculation.

APC of the saline suspensions inocula:

- *P. aeruginosa* 9027 = 1.1 \times 10^7/ml.
- *P. aeruginosa* 9721 = 1.8 \times 10^7/ml.
- *P. aeruginosa* 27853 = 1.5 \times 10^7/ml.
- *P. aeruginosa* 10145 = 2.0 \times 10^7/ml.
- *P. cepacia* 13945 = 1.7 \times 10^7/ml.
- *P. cepacia* 25416 = 9.9 \times 10^6/ml.
- *P. fluorescens* 13525 = 1.6 \times 10^7/ml.
- *P. putida* 12633 = 1.6 \times 10^7/ml.
- *P. stutzeri* 17588 = 1.7 \times 10^7/ml.
- Pseudomonas sp. 9230 = 6.3 \times 10^6/ml.
- *S. aureus* 6538 = 6.3 \times 10^6/ml.
- *E. coli* 8739 = 6.3 \times 10^6/ml.

MP. It was not possible to calculate STs, slopes, and D-values when the organisms were recovered at 48 hr (i.e., ST >48 hr), as for all strains of *P. aeruginosa* in MP or Na₂EDTA. Nevertheless, the survivor curve slope method may be used to determine synergy when the experimentally determined rate of death (slope) is a larger negative number than the sum of the MPSlopes of each of the components. Use of MPSlopes in determining synergy is discussed in greater detail below. No synergy was observed for *S. aureus* or *E. coli* in these experiments.

The results in Table VII show the growth response of *P. aeruginosa* 9027 on TSALT after exposure to various combinations of P and/or N in saline. As one reviews the growth responses of *P. aeruginosa* following exposure to various combinations of P and N, it is apparent that several of the combinations killed the population of *P. aeruginosa* faster than the same concentrations of either N or P used alone. The test organism was not recovered from test systems containing 0.1% N (except for one tube containing both 1% P and 0.1% N, in which one colony developed on TSALT at the 0 hr sampling). *P. aeruginosa* grew on TSALT streaked with 0.1% N; consequently, preservative carryover was not responsible for the lack of growth on TSALT in systems containing the highest concentration of N. Synergy was observed when the slope of the survivor curve was a larger negative number than the sum of the slopes (or MPSlopes) for the components. The systems in which synergism was observed are marked with an asterisk (Table VIII).
Table VI

Use of STs and MPSTs to Determine Antimicrobial Synergy for Several Species of *Pseudomonas* in 0.2% MP, 0.01% Na$_2$EDTA, and 0.2% MP + 0.01% Na$_2$EDTA (data from Table V)

<table>
<thead>
<tr>
<th>Test organism</th>
<th>ST</th>
<th>MPST</th>
<th>D-value</th>
<th>MPD-value</th>
<th>Slope</th>
<th>MPSlope</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2% MP solution:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P. aeruginosa 9027</td>
<td></td>
<td>>48</td>
<td></td>
<td>>9.5</td>
<td></td>
<td><−0.105</td>
</tr>
<tr>
<td>P. aeruginosa 27853</td>
<td></td>
<td>>48</td>
<td></td>
<td>>9.3</td>
<td></td>
<td><−0.108</td>
</tr>
<tr>
<td>P. aeruginosa 9721</td>
<td></td>
<td>>48</td>
<td></td>
<td>>9.1</td>
<td></td>
<td><−0.109</td>
</tr>
<tr>
<td>P. aeruginosa 10145</td>
<td></td>
<td>>48</td>
<td></td>
<td>>9.1</td>
<td></td>
<td><−0.110</td>
</tr>
<tr>
<td>P. cepacia 13945</td>
<td>48</td>
<td></td>
<td>9.2</td>
<td></td>
<td></td>
<td>−0.109</td>
</tr>
<tr>
<td>P. cepacia 25416</td>
<td></td>
<td>>48</td>
<td></td>
<td>>9.6</td>
<td></td>
<td><−0.104</td>
</tr>
<tr>
<td>P. fluorescens 13525</td>
<td></td>
<td>>48</td>
<td></td>
<td>>9.2</td>
<td></td>
<td><−0.108</td>
</tr>
<tr>
<td>P. putida 12633</td>
<td>48</td>
<td></td>
<td>9.2</td>
<td></td>
<td></td>
<td>−0.108</td>
</tr>
<tr>
<td>P. stutzeri 17588</td>
<td></td>
<td>>48</td>
<td></td>
<td>>9.2</td>
<td></td>
<td><−0.109</td>
</tr>
<tr>
<td>Pseudomonas sp. 9230</td>
<td></td>
<td>>48</td>
<td></td>
<td>>10</td>
<td></td>
<td><−0.100</td>
</tr>
<tr>
<td>S. aureus 6538</td>
<td></td>
<td>>48</td>
<td></td>
<td>>9.3</td>
<td></td>
<td><−0.107</td>
</tr>
<tr>
<td>E. coli 8739</td>
<td></td>
<td>>48</td>
<td></td>
<td>>10</td>
<td></td>
<td><−0.100</td>
</tr>
<tr>
<td>0.01% Na$_2$EDTA solution:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P. aeruginosa 9027</td>
<td></td>
<td>>48</td>
<td></td>
<td>>9.5</td>
<td></td>
<td><−0.105</td>
</tr>
<tr>
<td>P. aeruginosa 27853</td>
<td></td>
<td>>48</td>
<td></td>
<td>>9.3</td>
<td></td>
<td><−0.108</td>
</tr>
<tr>
<td>P. aeruginosa 9721</td>
<td></td>
<td>>48</td>
<td></td>
<td>>9.1</td>
<td></td>
<td><−0.109</td>
</tr>
<tr>
<td>P. aeruginosa 10145</td>
<td></td>
<td>>48</td>
<td></td>
<td>>9.1</td>
<td></td>
<td><−0.110</td>
</tr>
<tr>
<td>P. cepacia 13945</td>
<td>48</td>
<td></td>
<td>9.2</td>
<td></td>
<td></td>
<td>−0.109</td>
</tr>
<tr>
<td>P. cepacia 25416</td>
<td></td>
<td>>48</td>
<td></td>
<td>>9.6</td>
<td></td>
<td><−0.104</td>
</tr>
<tr>
<td>P. fluorescens 13525</td>
<td></td>
<td>>48</td>
<td></td>
<td>>9.2</td>
<td></td>
<td><−0.108</td>
</tr>
<tr>
<td>P. putida 12633</td>
<td>48</td>
<td></td>
<td>9.2</td>
<td></td>
<td></td>
<td>−0.108</td>
</tr>
<tr>
<td>P. stutzeri 17588</td>
<td>24</td>
<td></td>
<td>4.6</td>
<td></td>
<td></td>
<td>−0.218</td>
</tr>
<tr>
<td>Pseudomonas sp. 9230</td>
<td></td>
<td>>48</td>
<td></td>
<td>>10</td>
<td></td>
<td><−0.100</td>
</tr>
<tr>
<td>S. aureus 6538</td>
<td></td>
<td>>48</td>
<td></td>
<td>>9.3</td>
<td></td>
<td><−0.107</td>
</tr>
<tr>
<td>E. coli 8739</td>
<td></td>
<td>>48</td>
<td></td>
<td>>10</td>
<td></td>
<td><−0.100</td>
</tr>
<tr>
<td>0.2% MP + 0.01% Na$_2$EDTA solution:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P. aeruginosa 9027</td>
<td>4</td>
<td></td>
<td>0.8</td>
<td></td>
<td></td>
<td>−1.260*</td>
</tr>
<tr>
<td>P. aeruginosa 27853</td>
<td>4</td>
<td></td>
<td>0.8</td>
<td></td>
<td></td>
<td>−1.294*</td>
</tr>
<tr>
<td>P. aeruginosa 9721</td>
<td>24</td>
<td></td>
<td>4.6</td>
<td></td>
<td></td>
<td>−0.219*</td>
</tr>
<tr>
<td>P. aeruginosa 10145</td>
<td>4</td>
<td></td>
<td>0.8</td>
<td></td>
<td></td>
<td>−1.325*</td>
</tr>
<tr>
<td>P. cepacia 13945</td>
<td>48</td>
<td></td>
<td>9.2</td>
<td></td>
<td></td>
<td>−0.109</td>
</tr>
<tr>
<td>P. cepacia 25416</td>
<td>2</td>
<td></td>
<td>0.4</td>
<td></td>
<td></td>
<td>−2.498*</td>
</tr>
<tr>
<td>P. fluorescens 13525</td>
<td>2</td>
<td></td>
<td>0.5</td>
<td></td>
<td></td>
<td>−2.102*</td>
</tr>
<tr>
<td>P. putida 12633</td>
<td>2</td>
<td></td>
<td>0.4</td>
<td></td>
<td></td>
<td>−2.602*</td>
</tr>
<tr>
<td>P. stutzeri 17588</td>
<td>0.1</td>
<td></td>
<td>>0.02</td>
<td></td>
<td></td>
<td><−52.304*</td>
</tr>
<tr>
<td>Pseudomonas sp. 9230</td>
<td>24</td>
<td></td>
<td>5.0</td>
<td></td>
<td></td>
<td>−0.200</td>
</tr>
<tr>
<td>S. aureus 6538</td>
<td></td>
<td>>48</td>
<td></td>
<td>>9.3</td>
<td></td>
<td><−0.107</td>
</tr>
<tr>
<td>E. coli 8739</td>
<td></td>
<td>>48</td>
<td></td>
<td>>10</td>
<td></td>
<td><−0.100</td>
</tr>
</tbody>
</table>

Explanation of symbols: ST, sterilization time in hr; MPST, minimum possible sterilization time in hr; D-value, D-value in hr; MPD-value, minimum possible D-value in hr; Slope, slope of the survivor curve, in hr$^{-1}$; MPSlope, maximum possible slope of the virtual survivor curve, in hr$^{-1}$.

* Synergy observed, because the slope of the survivor curve was a larger negative number than the sum of the slopes (or MPSlopes) for the same concentrations of MP and Na$_2$EDTA taken separately.

Purchased for the exclusive use of nofirst nolast (unknown)
From: SCC Media Library & Resource Center (library.scconline.org)
Table VII

Determination of Sterilization Times for *P. aeruginosa* 9027 in Saline Containing 0 to 1.0% Phenoxyethanol and 0 to 0.10% Nipastat

<table>
<thead>
<tr>
<th>Preservative</th>
<th>0 hr</th>
<th>2 hr</th>
<th>4 hr</th>
<th>24 hr</th>
<th>48 hr</th>
<th>ST</th>
<th>MPST</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saline control</td>
<td>+/+</td>
<td>+/+</td>
<td>+/+</td>
<td>+/+</td>
<td>+/+</td>
<td>---</td>
<td>>48</td>
</tr>
<tr>
<td>0.1% P</td>
<td>+/+</td>
<td>+/+</td>
<td>+/+</td>
<td>+/+</td>
<td>+/+</td>
<td>---</td>
<td>>48</td>
</tr>
<tr>
<td>0.5% P</td>
<td>+/+</td>
<td>+/+</td>
<td>+/+</td>
<td>+/+</td>
<td>+/+</td>
<td>---</td>
<td>>48</td>
</tr>
<tr>
<td>1.0% P</td>
<td>+/+</td>
<td>+/+</td>
<td>+/+</td>
<td>+/+</td>
<td>+/+</td>
<td>48</td>
<td>---</td>
</tr>
<tr>
<td>0.005% N</td>
<td>+/+</td>
<td>+/+</td>
<td>+/+</td>
<td>+/+</td>
<td>+/+</td>
<td>---</td>
<td>>48</td>
</tr>
<tr>
<td>0.01% N</td>
<td>+/+</td>
<td>+/+</td>
<td>+/+</td>
<td>+/+</td>
<td>+/+</td>
<td>---</td>
<td>>48</td>
</tr>
<tr>
<td>0.05% N</td>
<td>+/+</td>
<td>+/+</td>
<td>+/+</td>
<td>+/+</td>
<td>+/+</td>
<td>---</td>
<td>>48</td>
</tr>
<tr>
<td>0.10% N</td>
<td>+/+</td>
<td>+/+</td>
<td>+/+</td>
<td>+/+</td>
<td>+/+</td>
<td>2</td>
<td>---</td>
</tr>
<tr>
<td>0.1% P + 0.005% N</td>
<td>+/+</td>
<td>+/+</td>
<td>+/+</td>
<td>+/+</td>
<td>+/+</td>
<td>---</td>
<td>>48</td>
</tr>
<tr>
<td>0.1% P + 0.01% N</td>
<td>+/+</td>
<td>+/+</td>
<td>+/+</td>
<td>+/+</td>
<td>+/+</td>
<td>---</td>
<td>>48</td>
</tr>
<tr>
<td>0.1% P + 0.05% N</td>
<td>+/+</td>
<td>+/+</td>
<td>+/+</td>
<td>+/+</td>
<td>+/+</td>
<td>2</td>
<td>---</td>
</tr>
<tr>
<td>0.1% P + 0.10% N</td>
<td>+/+</td>
<td>+/+</td>
<td>+/+</td>
<td>+/+</td>
<td>+/+</td>
<td>0.1*</td>
<td>---</td>
</tr>
<tr>
<td>0.5% P + 0.005% N</td>
<td>+/+</td>
<td>+/+</td>
<td>+/+</td>
<td>+/+</td>
<td>+/+</td>
<td>---</td>
<td>>48</td>
</tr>
<tr>
<td>0.5% P + 0.01% N</td>
<td>+/+</td>
<td>+/+</td>
<td>+/+</td>
<td>+/+</td>
<td>+/+</td>
<td>24</td>
<td>---</td>
</tr>
<tr>
<td>0.5% P + 0.05% N</td>
<td>+/+</td>
<td>+/+</td>
<td>+/+</td>
<td>+/+</td>
<td>+/+</td>
<td>2</td>
<td>---</td>
</tr>
<tr>
<td>0.5% P + 0.10% N</td>
<td>+/+</td>
<td>+/+</td>
<td>+/+</td>
<td>+/+</td>
<td>+/+</td>
<td>0.1*</td>
<td>---</td>
</tr>
<tr>
<td>1.0% P + 0.005% N</td>
<td>+/+</td>
<td>+/+</td>
<td>+/+</td>
<td>+/+</td>
<td>+/+</td>
<td>4</td>
<td>---</td>
</tr>
<tr>
<td>1.0% P + 0.01% N</td>
<td>+/+</td>
<td>+/+</td>
<td>+/+</td>
<td>+/+</td>
<td>+/+</td>
<td>4</td>
<td>---</td>
</tr>
<tr>
<td>1.0% P + 0.05% N</td>
<td>+/+</td>
<td>+/+</td>
<td>+/+</td>
<td>+/+</td>
<td>+/+</td>
<td>nd**</td>
<td>4</td>
</tr>
<tr>
<td>1.0% P + 0.10% N</td>
<td>+/+</td>
<td>+/+</td>
<td>+/+</td>
<td>+/+</td>
<td>+/+</td>
<td>2</td>
<td>---</td>
</tr>
</tbody>
</table>

Table symbols represent growth of *P. aeruginosa* on one (+/-), on both (+/+), or neither (-/-) TSALT plates inoculated from duplicate tubes containing the indicated concentrations of phenoxyethanol (P) or Nipastat (N). Tubes with P and/or N were incubated at room temperature for the times indicated. ST, sterilization time in hr; MPST, minimum possible sterilization time in hr.

* Although *P. aeruginosa* was not recovered in these samples, the ST was set at 0.1 hr because this is the approximate time required for setting up the series of samples after inoculation.

** nd, not done.

The *P. aeruginosa* inoculum APC = 1.7 × 10^7/ml.

DISCUSSION

This work was initiated when it was realized that the preservative system in adequately preserved nonionic emulsion systems was inactivating *P. aeruginosa* much more rapidly than the other test organisms customarily used in preservative efficacy testing (8). All of these emulsions contained MP. The parabens are known to be active against a wide range of gram-positive bacteria and fungi, but they are less active against gram-negative bacteria, especially the pseudomonads (12). Although 0.2% MP did not kill *P. aeruginosa* in 24 hr, combinations of MP and 1342 caused rapid killing of this test organism (Figure 1). The nonionic lotion with 0.2% MP (Table I) was selected for investigating the cause of this rapid inactivation of *P. aeruginosa* observed in our laboratory.

Pseudomonas has been particularly troublesome for the cosmetic and pharmaceutical industries. *P. aeruginosa, P. cepacia, P. fluorescens, P. putida,* and *P. stutzeri* can survive and grow in deionized water, and they have been isolated from contaminated cosmetics (13—15). *P. aeruginosa* has been recovered from contaminated mascaras and has caused...
Table VIII
Use of STs and MPSTs to Determine Antimicrobial Synergy for *P. aeruginosa* 9027 in 0 to 1.0% Phenoxyethanol and 0 to 0.10% Nipastat (data from Table VII)

<table>
<thead>
<tr>
<th>Preservative</th>
<th>ST</th>
<th>MPST</th>
<th>D-value</th>
<th>MPD-value</th>
<th>Slope</th>
<th>MPSlope</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saline control</td>
<td>—</td>
<td>>48</td>
<td>—</td>
<td>>6.6</td>
<td>—</td>
<td>< −0.151</td>
</tr>
<tr>
<td>0.1% P</td>
<td>—</td>
<td>>48</td>
<td>—</td>
<td>>6.6</td>
<td>—</td>
<td>< −0.151</td>
</tr>
<tr>
<td>0.5% P</td>
<td>—</td>
<td>>48</td>
<td>—</td>
<td>>6.6</td>
<td>—</td>
<td>< −0.151</td>
</tr>
<tr>
<td>1.0% P</td>
<td>48</td>
<td>—</td>
<td>6.6</td>
<td>—</td>
<td>−0.151</td>
<td>—</td>
</tr>
<tr>
<td>0.005% N</td>
<td>—</td>
<td>>48</td>
<td>—</td>
<td>>6.6</td>
<td>—</td>
<td>< −0.151</td>
</tr>
<tr>
<td>0.01% N</td>
<td>—</td>
<td>>48</td>
<td>—</td>
<td>>6.6</td>
<td>—</td>
<td>< −0.151</td>
</tr>
<tr>
<td>0.05% N</td>
<td>—</td>
<td>>48</td>
<td>—</td>
<td>>6.6</td>
<td>—</td>
<td>< −0.151</td>
</tr>
<tr>
<td>0.10% N</td>
<td>2</td>
<td>—</td>
<td>0.3</td>
<td>—</td>
<td>−3.615</td>
<td>—</td>
</tr>
<tr>
<td>0.1% P + 0.005% N</td>
<td>—</td>
<td>>48</td>
<td>—</td>
<td>>6.6</td>
<td>—</td>
<td>< −0.151</td>
</tr>
<tr>
<td>0.1% P + 0.01% N</td>
<td>—</td>
<td>>48</td>
<td>—</td>
<td>>6.6</td>
<td>—</td>
<td>< −0.151</td>
</tr>
<tr>
<td>0.1% P + 0.05% N</td>
<td>2</td>
<td>—</td>
<td>0.3</td>
<td>—</td>
<td>−3.615*</td>
<td>—</td>
</tr>
<tr>
<td>0.1% P + 0.10% N</td>
<td>0.1</td>
<td>—</td>
<td>0.01</td>
<td>—</td>
<td>−72.304*</td>
<td>—</td>
</tr>
<tr>
<td>0.5% P + 0.005% N</td>
<td>—</td>
<td>>48</td>
<td>—</td>
<td>>6.6</td>
<td>—</td>
<td>< −0.151</td>
</tr>
<tr>
<td>0.5% P + 0.01% N</td>
<td>24</td>
<td>—</td>
<td>3.3</td>
<td>—</td>
<td>−0.301</td>
<td>—</td>
</tr>
<tr>
<td>0.5% P + 0.05% N</td>
<td>2</td>
<td>—</td>
<td>0.3</td>
<td>—</td>
<td>−3.615*</td>
<td>—</td>
</tr>
<tr>
<td>0.5% P + 0.10% N</td>
<td>0.1</td>
<td>—</td>
<td>0.01</td>
<td>—</td>
<td>−72.304*</td>
<td>—</td>
</tr>
<tr>
<td>1.0% P + 0.005% N</td>
<td>4</td>
<td>—</td>
<td>0.6</td>
<td>—</td>
<td>−1.808*</td>
<td>—</td>
</tr>
<tr>
<td>1.0% P + 0.01% N</td>
<td>4</td>
<td>—</td>
<td>0.6</td>
<td>—</td>
<td>−1.808*</td>
<td>—</td>
</tr>
<tr>
<td>1.0% P + 0.05% N</td>
<td>4</td>
<td>—</td>
<td>0.6</td>
<td>—</td>
<td>−1.808*</td>
<td>—</td>
</tr>
<tr>
<td>1.0% P + 0.10% N</td>
<td>2</td>
<td>—</td>
<td>0.3</td>
<td>—</td>
<td>−3.615</td>
<td>—</td>
</tr>
</tbody>
</table>

Explanation of symbols: ST, sterilization time in hr; MPST, minimum possible sterilization time in hr; D-value, D-value in hr; MPD-value, minimum possible D-value in hr; Slope, slope of the survivor curve, in hr⁻¹; MPSlope, maximum possible slope of the virtual survivor curve, in hr⁻¹.

* Synergy observed, because the slope of the survivor curve was a larger negative number than the sum of the slopes (or MPSlopes) for the same concentrations of P and N taken separately.

Corneal ulcers (16,17). This organism produces several virulence factors that are believed to contribute to its multifactorial pathogenicity and complicate the clinical course of infections (18–23).

P. cepacia has considerable physiological versatility and has broad resistance to antibiotics (24,25). *P. cepacia* 13945 was selected for detailed investigation in this work because, generally, it was more resistant than the other pseudomonads in our culture collection to preservative systems containing MP and acrylic acid homopolymer/copolymer. *P. fluorescens* and *P. putida* were selected for detailed studies here because they are nutritionally versatile and are able to grow on a wide variety of substrates (24,26).

When the lotion was prepared using 0.2% 1342 and 0.2% MP, preservative efficacy testing revealed significant antibacterial activity against most test cultures of *Pseudomonas* (Table II). All fluorescent pseudomonads [*P. aeruginosa, P. fluorescens, P. putida* and *P. stutzeri* (24)] were inactivated rapidly, with D-values ≲1.1 hr. Both *P. cepacia* strains were inactivated more slowly in the preservative system than were the fluorescent pseudomonads. The reasons for the resistance of strains 13945 and 25416 are not known; however, *P. cepacia* is nutritionally versatile and accumulates poly-beta-hydroxybutyrate (PHB) as a carbon reserve (24,27,28). These physiological characteristics may enable *P. cepacia* to be more difficult to inactivate in test systems containing chelating agents and MP than are the fluorescent pseudomonads.
We speculate that PHB may be a classical chelating agent, in the sense described by Marshall et al. (29). Intracellular accumulation of PHB by *P. cepacia* (24) may enable this species to retain divalent metal ions as a PHB chelate, which could provide an internal reservoir that may help prevent loss of metal ions to exogenous chelators. This would enable *P. cepacia* to resist more effectively the destabilization caused by external chelating agents (7) than do the fluorescent pseudomonads, which do not accumulate PHB (24). Definitive studies are needed to confirm this.

The data in Table II show that the preservative system in this lotion was less effective for *S. aureus*, *B. cereus*, and *E. coli* than it was for many of the *Pseudomonas* test cultures. The percentage of sporulation of *Bacillus* sp. was 30–50% at 24 hr (8); however, *B. cereus* produced only a few visible spores in a microscopic field (1000×) when 24-hr TSALT cultures were suspended, stained, and examined microscopically. Experience with *Bacillus* sp. and *B. cereus* 11778 revealed that these organisms produce few (if any) preservative system-resistant spores during 24-hr growth on TSALT at 37°C. These organisms were used to determine the effects of preservative systems on vegetative bacilli.

The data in Table III illustrate anti-*Pseudomonas* synergy because the rate of inactivation (i.e., slope of the survivor curve) of each population of test organisms in MP + 934, 941, or 1342 was a larger negative number than the sum of the rates (slopes) of inactivation in MP and each acrylic acid homopolymer/copolymer taken separately. *P. cepacia* showed an additive effect in lotion containing MP + 1342.

The effect of nonionic lotion pH on the results of preservative efficacy testing with *P. aeruginosa*, *P. cepacia*, *P. fluorescens*, and *P. putida* was determined in lotions adjusted to pH 6–9 by adding varying amounts of TEA. No consistent effect of lotion pH on antibacterial activity with these four test organisms was observed. The antibacterial effect of MP is reported to increase with decreasing pH below the pKa of MP (pH 8.17) (30). *P. cepacia* was inactivated more slowly than the other pseudomonads in lotions adjusted to pH 6–9.

Incorporation of ≥0.1% 934, 941, or 1342 into the nonionic lotion produced a marked decrease in the D-values for *P. aeruginosa*, *P. cepacia*, *P. fluorescens*, and *P. putida*, compared to the D-values obtained in lotions containing no 934, 941, or 1342. We were unable to demonstrate a consistent relationship between the acrylic acid homopolymer/copolymer concentration, from 0.1–0.4%, and the observed rates of death of the test organisms. It is possible that the maximum synergistic action was obtained at ≤0.1% polycrylic acid/acrylic acid copolymer so that higher concentrations produced no further increase in anti-*Pseudomonas* activity.

The addition of 0.1% CaCl₂ to the nonionic lotion containing 0.2% 1342 and 0.2% MP produced significant increases in the D-values for the fluorescent pseudomonads (*P. aeruginosa*, *P. fluorescens*, and *P. putida*) and eliminated the anti-*Pseudomonas* synergy. The opposite effect was observed with *P. cepacia*, because addition of 0.1% CaCl₂ produced a significant decrease in D-values for this organism (Table IV). The inhibitory effects of CaCl₂ on *P. cepacia* may have been due primarily to the decrease in the pH of this lotion caused by the addition of CaCl₂, compared to the control. *P. cepacia* was the only test organism that did not show synergistic anti-*Pseudomonas* activity in the presence of 1342 and MP (Table III). These results reflect the physiological diversity of different species of *Pseudomonas*.

Purchased for the exclusive use of nofirst nolast (unknown)
From: SCC Media Library & Resource Center (library.scconline.org)
Analyses of tap water and 1342-treated tap water indicated that exposure of the water to the 1342 caused a significant decrease in hardness, expressed as ppm CaCO₃. This suggests that 1342 is capable of chelating Ca²⁺ ions. The 0.1% 1342 and 0.01% Na₂EDTA reduced water hardness by similar amounts. This suggests that these compounds have similar chelating abilities for the Ca²⁺ ions.

The ST study revealed little antibacterial activity by either MP or Na₂EDTA alone (Table V). Rapid killing occurred in the presence of MP + Na₂EDTA because no viable organisms were recovered at 4 hr in most test systems. The test organisms found to be more persistent in these tests were, in general, more persistent in lotions containing 1342 and MP (Table II). In some cases, it is believed that differences in results between these two tables may be attributed to differences in APCs of the inocula.

The STs and MPSTs in Table V were used to calculate the slopes and D-values (or MPSlopes and MPD-values) in Table VI. Survivor curve slopes may be determined when the STs and initial inocula of the test organisms are known. For example, P. aeruginosa 9027 had an ST of 4 hr in MP + Na₂EDTA, and the APC in the sample was 1.1 × 10⁷/ml. Here, the D-value and slope were 0.8 hr and −1.26 hr⁻¹, respectively. Where STs are not known (i.e., ST >48 hr), the MPD-values and corresponding MPSlopes may be estimated from a virtual survivor curve constructed using the APC of the inoculum and the MPST, as explained above. Here, the MPD-value for P. aeruginosa 9027 in MP was calculated to be >9.5 hr and the MPSlope was <−0.105 hr⁻¹. This slope is the negative reciprocal of the MPD-value and represents the fastest possible rate of death of this organism in this test system. If P. aeruginosa were being killed at a faster rate, then no organisms would have been recovered at the last sampling (i.e., at 48 hr). The MPSlope for P. aeruginosa 9027 in Na₂ EDTA was estimated similarly to be <-0.105 hr⁻¹. Synergy was observed here, because the slope for the system containing MP + Na₂EDTA (-1.26 hr⁻¹) was a larger negative number than the sum of the MPSlopes for MP and for Na₂EDTA (-0.210 hr⁻¹). This procedure was used for each test organism shown in Table VI. The MP + Na₂EDTA system had synergistic anti-Pseudomonas activity for all pseudomonads, except for P. cepacia 13945. The MPD-values for different strains of P. aeruginosa were slightly different due to the slightly different concentrations of organisms in the inocula (Table VI). The estimated STs for S. aureus and E. coli were >48 hr in all test systems; consequently, it was not possible to establish synergy for these organisms in this experiment.

Numerous workers have reported the enhancement of preservative action by EDTA (3,7,31–34). The potentiating by EDTA is believed to be due to permeabilization synergy, in which one antimicrobial agent (EDTA) assists the passage of the other antimicrobial through the cell wall or membrane (7). We propose that the anti-Pseudomonas synergy observed with 934, 941, or 1342 and MP is due, at least in part, to chelation of divalent metal ions and that it is similar to permeabilization synergy reported for the potentiation of preservative action by EDTA (7). Results in support of this are the demonstration that 1342 has chelation activity, the elimination of the synergism observed with the fluorescent pseudomonads by the addition of 0.1% CaCl₂ (Table IV), and the similarities in the survival patterns of the various pseudomonads in nonionic lotions with polyacrylic acid or acrylic acid copolymer/MP systems (Table II) and in Na₂EDTA/MP solutions (Table V).

Similar patterns of inactivation were observed in both aqueous and nonionic emulsion
systems. This suggests that the observed synergy is not due to the nonionic emulsions studied here. The effect of 934, 941, or 1342 and MP on the inactivation of *Pseudomonas* was not tested in anionic or cationic emulsion systems or in various surfactant systems such as anionic shampoos and liquid soaps. The reason for this is that 1342 emulsion systems are sensitive to electrolytes, which cause loss of emulsion stability (35).

Adair *et al.* (36) reported that *P. aeruginosa* 9027 underwent lysis following metabolism of di- or tricarboxylic acids and sodium lauryl sulfate, and that lysis was not due to chelation. It is evident that the mechanism reported by these workers is not the same as the mechanism observed in the current work.

The antibacterial synergy of MP and acrylic acid homopolymer/copolymers against most *Pseudomonas* test cultures was not observed with *E. coli* 8739. This gram-negative organism was not inactivated rapidly in nonionic emulsions containing MP and 1342 or in solutions containing MP + Na₂EDTA (Tables II, V, and VI). These findings suggest a mechanism of action that is relatively specific for pseudomonads and not other gram-negative bacteria; however, testing with other strains of *E. coli* and other gram-negative organisms is necessary to confirm this.

The survivor curve slope method of determining synergy of preservative systems has application to both current experimental findings and to data presented in the literature. Application of this method to the ST data of Richards and Hardie (37) revealed synergism for fentichlor/phenylethanol combinations against *E. coli* and *Proteus vulgaris* at 0.0015% or 0.0050% fentichlor + 0.4% phenylethanol, and with 0.0050% fentichlor + 0.4% phenylethanol against *P. aeruginosa*. The survivor curve slope method revealed increased antibacterial activity against *S. aureus*; however, this effect was not synergistic. Our use of the survivor curve slope method corroborated the findings of Richards and Hardie.

The survivor curve slope method of determining synergy was applied to the D-values for *S. aureus*, in various combinations of preservatives in saline, reported by Akers *et al.* (38). Slopes of the survival curves were determined by taking the negative reciprocal of the D-values reported by these workers, and these slopes were used to determine whether mixtures of two preservatives exhibited synergy. Although these workers did not attempt to determine synergy, application of the survival curve slope method to their data for linear analysis of preservatives in saline solutions revealed that systems containing 0.2% phenol + 0.3% m-cresol, 0.2% phenol + 0.2% m-cresol, and 0.2% MP + 1.0% benzyl alcohol exhibited synergy. Akers *et al.* ranked the efficacy of these preservative systems in the top half of the systems tested against *S. aureus*.

The survivor curve slope method was used to study synergy in a system reported by Boehm to be synergistic (4). He reported that 0.25% P and 0.09% N were synergistic against *P. pyocyanea*. Since we did not have the same strain as in Boehm's experiments, it was decided to "bracket" the concentrations of P and N used in Boehm's studies. The results in Table VII show the growth response observed with *P. aeruginosa* 9027 in 0 to 1% P and/or 0 to 0.1% N. The STs and MPSTs in Table VII were used to calculate the slopes, MPSlopes, D-values, and MPD-values in Table VIII. Our findings show synergy for concentrations that bracket the synergistic combination reported by Boehm.

The use of kinetic parameters—the slopes of survivor curves obtained by use of the linear regression method—to demonstrate anti-*Pseudomonas* synergy of MP and acrylic acid homopolymer/copolymers *in vitro* has not been reported previously. The survivor
curve slope method may be used to determine synergy when STs are known for the test organisms in systems containing combined preservative system components and in which the inoculum level is known. Isobolograms (5,7,39) are not needed when using this method.

We propose that the synergy with acrylic acid homopolymer/copolymers and MP is due, at least in part, to the chelation of divalent metal ions by the homopolymer/copolymers and that it is similar to the potentiation of preservative action by EDTA. No synergy was demonstrated in systems challenged with \textit{E. coli}, \textit{S. aureus}, and \textit{B. cereus}, which suggests that the synergy was specific for the pseudomonads. In general, \textit{P. cepacia} was inactivated more slowly than the fluorescent pseudomonads in test systems containing acrylic acid homopolymer/copolymers and MP. It is possible that the primary benefit from the polyacrylic acid/acrylic acid copolymer synergy with MP may be obtained in systems in which EDTA cannot be used or in systems with low ionic strength. Experiments were not performed to determine whether acrylic acid homopolymer/copolymers exert a synergistic effect on MP/EDTA systems, or whether EDTA exerts a potentiating effect on MP/acrylic acid homopolymer/copolymers.

Additional experiments are required to define the range of synergy of MP and other paraben esters with these homopolymer/copolymers and to characterize the mechanism of this synergy with certainty.

ACKNOWLEDGMENTS

We thank Mr. Mark Entrup, of Hill Top Biolabs, Inc., for supplying the culture of \textit{E. coli}. We thank Mr. Gary Kramzar, of Nipa Laboratories, Inc., for supplying phenoxyethanol and Nipastat.

REFERENCES

(9) Betz Laboratories, Analytical Procedure #130, "Hardness Titration Method" (1978).

Purchased for the exclusive use of nofirst nolast (unknown)
From: SCC Media Library & Resource Center (library.scconline.org)

Skin stripping as a potential method to determine in vivo cutaneous metabolism of topically applied drugs

Received August 25, 1989.

Synopsis

By chromatographing an extract of the tapes obtained in a skin stripping procedure, cutaneous metabolism of compounds after topical administration may be observable, provided that outward transdermal migration occurs. This method may be helpful, especially in situations where no differentiation between cutaneous and systemic metabolism can be made due to the experimental design or the very low systemic concentrations. Through use of this methodology, it can be assessed that the penetration enhancer for percutaneous absorption, Azone®, is only present as the parent compound in the stratum corneum, whereas the anti-acne agent Cyoctol undergoes cutaneous biotransformation during skin passage.

INTRODUCTION

In recent years there has been a renewed and growing interest in dermal and transdermal drug delivery. This route opens new possibilities for systemic therapy, especially for drugs with short biological half-lives due to extensive first-pass metabolism in the liver. Compounds, however, may also be metabolized in the skin before reaching the systemic circulation (1,2), thereby reducing their bioavailability.

For this reason, the cutaneous metabolism of these compounds should be studied and compared to already available systemic biotransformation data. If cutaneous metabolism occurs, additional investigations may be required to determine the pharmacological profile of the dermally formed metabolites.

A simple method to establish in vivo cutaneous metabolism of topically applied agents was developed and will be discussed on the basis of two compounds currently under investigation in our laboratories, Azone® and Cyoctol. Both compounds are to exert their action in human skin, Azone as a penetration enhancer for percutaneous absorp-
tion (3) and Cyoctol, an anti-androgen (4), as an anti-acne drug. In order to be able to follow the metabolic processes, tracer amounts of 14C-labeled compounds were used. The structure of the compounds and the position of the labels is given in Figure 1.

MATERIALS AND METHODS

MATERIALS

14C-labeled Azone, 1-dodecylazacycloheptan-2-one ([1-14C]-dodecyl), and Cyoctol, 6-(5-methoxyhept-1-yl)bicyclo[3.3.0]octan-3-one ([14C]-carbonyl), were kindly supplied by Nelson Research, Irvine, California, and Chantal Pharmaceutical Corporation, Los Angeles, California, respectively. The radiochemical purity was determined by isocratic high-performance liquid chromatography (HPLC) to be at least 95.3 and 97.0%, respectively, using the system described below. All other materials were HPLC grade and obtained commercially.

METHODS

Study performance. In separate studies Azone and Cyoctol were applied to a 24-cm² area on the volar aspect of the forearm of healthy human volunteers and left in place under occlusion for 12 and 8 hours, respectively. Azone was dosed in a therapeutic formulation (100 mg) to three volunteers at a concentration of 1.6%, containing tritium-labeled...
beled triamcinolone acetonide as well, at a concentration of 0.05%. Cyoctol was dosed to four volunteers in an aqueous alcohol solution (ethanol (96%)/bidistilled water 75/25) at a concentration of 1.5%. Study conditions have been reported in full detail elsewhere (5,6). Skin samples were obtained at 1, 20, and 44 hours (Azone) or 1, 23, and 45 hours (Cyoctol) after removal of the dose by the skin stripping method described below.

Skin stripping. Skin stripping was done by means of commercial translucent cellophane tape of 9-mm width, made by 3M Company (Leiden, The Netherlands). Strips of ca. 6 cm in length were affixed and removed sequentially from the same transverse portion of the treatment site. At each stripping, the tape was firmly rubbed in place to achieve thorough adherence and then removed after about three seconds. The stripping procedure was complete when the area started to become glistening and the tape no longer adhered to the skin when applied, or when it became painful to the volunteer. Maximally 28 strips were applied.

All strips from one procedure were combined in a glass container, and 60 ml of methanol was added. The container was vigorously shaken for 16 hours to allow full extraction of drug-related material. The chemical stability in methanol of both compounds is at least several years. As it is impossible to spike tapes, the efficiency of extraction of radioactive material from the tapes cannot be given. At the end of the extraction period, however, the sticky layer of the tape had completely dissolved in the scintillation cocktail.

The extracts were evaporated to dryness under vacuum, and the residue was redissolved in methanol/phosphate buffer 0.01 M, pH 6.8 (85/15 v/v) (Azone), or in methanol (Cyoctol). After redissolution, the samples were filtered through a 0.45-μm filter. A 50-μl aliquot of the filtrate was injected into the HPLC system described below. The efficacy of the analytical procedure was checked. When a methanol solution containing tapes was spiked with 14C-Azone or 14C-Cyoctol and assayed identically, the recovery proved to be 94.7 ± 1.2 and 96.3 ± 2.4 (mean ± S.D.), respectively.

Metabolic profiling. Extracts of the dosages and the tapes were analyzed in an HPLC-system consisting of two Waters M510 HPLC-pumps (Millipore, Etten-Leur, The Netherlands), controlled by an Adalab® data acquisition/control system (Interactive Microwave, State College, Pennsylvania). Isocratic elution with methanol/phosphate buffer 0.01 M, pH 6.8 (85/15 v/v) was performed when analyzing the extracts of the dosage and the tapes containing 14C-Azone-derived radioactivity. In the case of 14C-Cyoctol-derived radioactivity, a linear gradient from 100% phosphate buffer 0.01 M, pH 6.8, to 100% methanol in 20 minutes followed by a methanol flush of 10 minutes was performed. In both cases the flow rate was 1.0 ml/min. Effluent fractions of 0.5 minutes were collected in polyethylene scintillation vials and vigorously shaken with 3 ml of the scintillation cocktail RiaLuma (Lumac, Landgraaf, The Netherlands). The samples were counted on a Packard Minaxi B4450 Liquid Scintillation Spectrometer (Packard Technologies, Irvine, California) for five minutes or a statistical accuracy of 0.5%.

RESULTS AND DISCUSSION

The chromatograms of the radioactivity in the dosages and the tape extracts are shown in Figures 2 and 3 for Azone and Cyoctol, respectively. The relative contribution of the peaks to the total eluted amount of radioactivity is given in Table I.
The metabolic profile of the 14C-Azone-derived radioactivity in the tape extract obtained from the stripping procedure at one hour after removal of the dose showed only the parent compound, except for a minor amount of radioactivity in the front. Tritiated triamcinolone acetonide was co-administered with the carbon-14-labeled Azone and was present in the tape extracts in large amounts relative to the amount of carbon-14 radioactivity (5). As the tritiated drug eluted at two minutes, the small peak at the
SKIN STRIPPING TO DETERMINE METABOLISM

Figure 3. Radiochromatograms of 14C-Cyoctol-derived radioactivity in the dosage (A) and the tape extracts at 1 (B), 23 (C), and 45 hours (D) after removal of the dose.

front most likely originated from the tritiated drug. It should be noted in this regard that even though liquid scintillation counters have programs to correct for spillovers when 14C and 3H isotopes are counted simultaneously, such programs may not be able to adequately correct if the amounts of 14C isotopes present are rather small in comparison to the amounts of 3H isotopes. Radiochromatograms at 20 and 44 hours showed similar profiles, yet at much lower quantities, due to the rapid disappearance of Azone from the stratum corneum (5). Levels of radioactivity were therefore close to the baseline, and this makes the assessment of the percentual contribution of individual peaks meaningless. Nevertheless, all profiles were basically the same at the three collection times, and it can therefore be concluded that only unchanged Azone is present in the stratum corneum.

With Cyoctol, the situation appears to be quite different. At one hour after removal of the dose, some metabolites can be detected in small amounts, but the majority of the radioactivity is still present as the parent compound (see Figures 3A and 3B). Table I shows that, as time goes by, the relative contribution of Cyoctol (peak 4), decreases, whereas that of the metabolites increases. At 45 hours after removal of the dose, only about 35% of the radioactivity in the stratum corneum is present as unchanged Cyoctol.
Table I

Relative Contribution of Individual Compounds as a Percentage of the Total Eluted Amount of \(^{14}\text{C}-\text{Azone (A; n = 3) or }^{14}\text{C}-\text{Cyoctol (C; n = 4)}\) Derived Radioactivity (mean ± SD)

<table>
<thead>
<tr>
<th>Test compound</th>
<th>Peak number(^1)</th>
<th>Dosage</th>
<th>Relative contribution (%) in tape extracts at hour</th>
</tr>
</thead>
<tbody>
<tr>
<td>Azone</td>
<td></td>
<td></td>
<td>1 (A + C) 20 (A) or 23 (C) 44 (A) or 45 (C)</td>
</tr>
<tr>
<td>1</td>
<td>95.4 ± 1.8</td>
<td>94.0 ± 3.8</td>
<td>N.D.(^2) 17.5 ± 3.9 N.D.(^2)</td>
</tr>
<tr>
<td>1</td>
<td>1.4 ± 0.9</td>
<td>9.7 ± 5.0</td>
<td>15.7 ± 1.7</td>
</tr>
<tr>
<td>2</td>
<td>4.0 ± 2.6</td>
<td>12.2 ± 4.2</td>
<td>5.9 ± 1.6</td>
</tr>
<tr>
<td>3</td>
<td>4.0 ± 3.1</td>
<td>8.3 ± 7.0</td>
<td>35.4 ± 13.4</td>
</tr>
<tr>
<td>4</td>
<td>93.9 ± 1.4</td>
<td>78.3 ± 16.8</td>
<td>49.5 ± 19.7 14.2 ± 10.0</td>
</tr>
<tr>
<td>5</td>
<td>6.6 ± 7.6</td>
<td>9.2 ± 5.8</td>
<td></td>
</tr>
</tbody>
</table>

\(^1\) The numbers correspond to those in Figures 2 and 3.

\(^2\) N.D. = not determined.

The possibility of chemical degradation of Cyoctol during the sample work-up could be excluded by having the parent compound undergoing the same sample processing. No compounds other than Cyoctol could be detected.

These findings indicate that only unchanged Azone is present in the tape extracts, while in the case of Cyoctol, both the parent compound and its metabolites can be found. The stratum corneum, however, is a layer of dead cells, assumed to be devoid of metabolic activity, as opposed to the underlying viable epidermis and dermis where skin metabolism may take place (1). Bioconversion of Cyoctol, therefore, conceivably occurred in one of these layers. Yet, stripping removes only two thirds of the stratum corneum (7) and cannot have removed part of the viable epidermis. The presence of metabolites in the stratum corneum can be explained by assuming outward migration of the metabolites formed in the viable epidermis and/or dermis. Outward migration has been described for compounds following oral administration (8,9), but recently could be established following dermal application as well in the case of Cyoctol (6,10). Although the majority of the metabolites formed in the viable epidermis will move inwards into the body, favored by a more aqueous environment and systemic removal, a concentration gradient will also exist towards the stratum corneum. As a result of that, the stripping technique will usually underestimate the extent of metabolism. In the case of Cyoctol, for instance, De Zeeuw et al. showed that this drug was completely metabolized during skin passage to a more nonpolar metabolite, corresponding to peak 5 in Figure 1 (10).

A good indication as to cutaneous metabolism can be obtained from the metabolic profiles of the ipsi- and contralateral plasma samples (11). However, it is sometimes impossible to apply the latter methodology, for example, when dosing on areas such as the back, abdomen, or forehead. Moreover, the levels of radioactivity in the ipsi- and contralateral plasma samples have to be relatively high to obtain reliable metabolic profiles. This presents severe difficulties with drugs that have low dermal absorption such as Azone (5,12,13).

The skin stripping methodology does not have these disadvantages and thus seems to be an interesting, simple, and noninvasive alternative to assess in vivo cutaneous metabolism, provided that sufficient outward migration of metabolites occurs. The technique
should be considered as a potential method to determine whether metabolism can take place rather than providing quantitative information on the extent of cutaneous metabolism.

ACKNOWLEDGMENTS

This study was supported in part by Nelson Research and Chantal Pharmaceutical Corporation.

REFERENCES

This 964-page volume of formulations consists of three parts: subject index, formulations—making procedures, and raw materials—trade names. It contains more than 1,800 cosmetic formulations based on information obtained from more than 150 different suppliers, whose addresses are listed in the last section of the book.

In most cases the formula source is provided, and in many but not all cases, a brief making procedure is described. Each formulation is identified by its end use. The formulations—making procedure section is divided into 14 different product classes: antiperspirants and deodorants, baby products, bath and shower products, beauty aids, creams, fragrances and perfumes, hair care products, insect repellants, lotions, shampoos, shaving products, soaps, suncare products, and miscellaneous. Each section contains a large number of different types of formulations; for example, the shampoo section contains more than 100 different types of shampoo formulas.

To those beginning in cosmetics and toiletry formulation, this book could be exceedingly useful. Even to those with several years experience, it is a useful reference source, and it offers convenience, since this single volume can be used to replace large file cabinets of supplier formula information.

The only drawbacks that this book offers are the steep price and, in some cases, the rather limited information provided on making procedures. Of course, the price is only a drawback to those on a strict budget. The limited making procedure information could present problems for the beginning cosmetics formulator, but it is certainly adequate for the experienced formulator.

Cosmetic and Toiletry Formulations can be a useful and valuable addition to the libraries of those involved in cosmetics formulation. — CLARENCE R. ROBBINS

—Colgate Palmolive Co.
Abstracts

The Annual Scientific Meeting and Seminars of the Society of Cosmetic Chemists are important venues for informing the participants about the state of the art and recent technical advances in the field of Cosmetic Science. To provide broader dissemination of that information, the Publications Committee has decided to publish abstracts of the technical presentations made at these Meetings and Seminars in the Journal.—The Editor.

Society of Cosmetic Chemists
Annual Seminar
May 10–11, 1990
San Francisco Hilton on Hilton Square
San Francisco

Program arranged by the Society’s Committee on Scientific Affairs
Anne Wolven-Garrett (A.M. Wolven, Inc.), Chair, 1990

SESSION A
INTERACTION BETWEEN RAW MATERIAL SUPPLIERS AND FORMULATORS

Optimizing the formulator-supplier relationship
Peter J. Kaufmann, Almay, Inc., 1501 Williamsboro St., Oxford, NC 27565

The relationship between the cosmetic chemist and the raw material supplier, will be examined emphasizing ways to optimize the productivity of both. Current trends in the cosmetic and related industries will be examined, forming the basis for suggestions on improving the partnership between chemists and raw material suppliers in the development of new personal care products.

Technical interactions between supplier and customer
Duane G. Krzysik, Dow Corning Corporation, 2200 W. Salzburg Rd., Midland, MI 48686

It is the purpose of this paper to touch on current interactions between suppliers of specialty chemicals and their customers, mainly product development chemists. We will then discuss some of the apparent difficulties of this relationship and suggest possible alternatives that will help make both the supplier and the customer more successful.

Gaining and maintaining a competitive edge will be a key factor to success in the 1990s. Competition will be tough not only for the supplier but also for the customer. Consumers at every level are becoming more educated, and with that education comes increased expectations.

To meet these expectations, significant advancements will be made in cosmetic science as well as in related fields such as dermatology. This will require more complex interactions and development between suppliers and customers. It is this interaction, however, that will be a key factor in new product development, commercialization, and, ultimately, market success.

A Realistic toxicological profile for new cosmetic ingredients
Howard I. Maibach, M.D., Department of Dermatology, University of California Medical Center, San Francisco

When exciting new cosmetic ingredients are being introduced into the consumer skin and hair care market, both the supplier and the cosmetic manufacturer want to be sure that consumers using their new product can realize the benefits of the product with minimal risk. Early evaluation of individual ingredients based on experience and testing, where required, will prevent unexpected and expensive problems late in the product development process. New materials can be evaluated first by comparing chemical structure with known classes of irritants and sensitizers. These comparisons will help the cosmetic product developer and the supplier to determine together whether minimal or extensive toxicological testing is desirable. Once the final proto-
type product has been selected, a series of skin toxicological tests are available; however, the selection of a reasonable combination of tests will depend on product use: skin care or hair care, single use or continuous use, probable site of application, probable misuse, intended function, and experience with similar products in the same category.

SESSION B
REGULATORY ISSUES IN THE 1990S

New and Existing raw materials—A regulatory minefield
Joel E. Rogelberg, Lonza, Inc., 1717 Route 208, Fairlawn, NJ 07410

The 1980s brought with it a new set of ground rules concerning the protection of our environment. The strong thrust of new regulations in the 80s challenged American industry to respond rapidly, while maintaining its position in highly competitive markets.

While regulatory pressures gain in strength, the number of companies that are willing and able to adapt has withered. This is a reflection of global consolidation and the financial impact compliance requires.

The author will examine some of the dangers and opportunities for the 90s based on the manufacture of specialty biocides. Included will be a focus on specialty biocides and the associated regulatory issues. Topics of discussion are:

- Acceptance of a preservative system for worldwide use
- Handling of hazardous basis raw materials and by-products
- Biodegradability
- Preservative safety testing
- Consumer needs vs. environmental requirements
- Negotiating with regulatory agencies

SESSION C
FRAGRANCE SCIENCE AND TECHNOLOGY

The biology of olfaction: Focus on an odorant-binding protein
Jonathan Pevsner, Ph.D., Department of Biological Science, Stanford University, Stanford, CA 94305

The molecular basis of olfaction is poorly understood. Odorants must travel from air through the nasal mucosa to reach olfactory receptor cells located in the olfactory epithelium. To understand these processes, we studied the binding of radioactive odorants to homogenates of the cow or rat nose. We identified an odorant-binding protein (OBP) that is present in many species including humans. OBP is a small, soluble protein that is synthesized in the lateral nasal gland. It is secreted from that gland into nasal mucus in high concentration. The pure protein can bind odorants of various structural classes including terpenes, aromatics, musks, and aldehydes. We cloned the gene for rat OBP. Analysis of the protein sequence indicates that OBP is homologous to a family of transport proteins, such as the retinol-binding protein that carries vitamin A to the eye. We propose that OBP is a carrier protein for odorants, delivering them to olfactory neurons within the nose.

The effects of odor administration on performance and stress in a sustained attention task
William N. Dember, Ph.D., Department of Psychology, University of Cincinnati, Cincinnati, OH 45221-0376

Based on some data from EEG recording and subjective reports, we expected the administration of certain fragrances to enhance performance and/or reduce stress in a sustained attention (vigilance) task. Subjects were asked to detect the occurrence of a visual signal that was infrequently and aperiodically presented on a video screen, temporally interspersed among similar patterns. In experiment 1, subjects received a 30-second burst of either of two fragrances, peppermint or muguet, or plain air. Both fragrances had been judged pleasant in a pilot study; peppermint had been judged alerting, muguet relaxing. Subjects in both fragrance conditions showed superior performance accuracy to those in the plain-air condition. No effects on self-reported stress were found. In experiment 2, only peppermint was used, along with a plain-air and a no-air control. Subjects in the peppermint condition did better than the control subjects and also reported less stress. The exact mechanism for these effects has yet to be identified.

Fragrance use and social interaction
John B. Nezlek, Ph.D., Department of Psychology, College of William & Mary, Williamsburg, VA 21385

This study investigated the relationship between individuals' use of personal fragrances and their social interactions. Subjects maintained a social interaction diary for three weeks. The diaries provided detailed summaries of the quality and quantity of subjects' social contacts, including subjects' beliefs about others' awareness of their fragrances and how pleasant their fragrances were to others. Subjects' perceptions of how often others were aware of their fragrances were unrelated to quality and quantity of their social interactions. Subjects' estimates of how pleasing their fragrances were to others were unre-
lated to the quantity of their interactions. However, these estimates were closely related to the quality of social interactions. The more pleasant subjects thought their fragrances were to others the more satisfaction and intimacy they found in social interaction and the more confident they felt in interaction. The results were similar for men and women. The data suggests that fragrances should be studied as social psychological phenomena in addition to being considered as olfactory stimuli.

SESSION D
PATHWAYS OF SKIN PENETRATION

Biophysical evaluation of the skin’s barrier function
Russell O. Potts, Ph.D., Pfizer Central Research, Groton, CT

The stratum corneum (SC) is the morphologically unique outer layer of the skin that acts as the primary barrier in terrestrial mammals to water loss and the uptake of toxic substances. The techniques of differential scanning calorimetry (DSC) and Fourier transform infrared (FTIR) spectroscopy have been used to evaluate the biophysical properties of the SC. These techniques provide information on both SC protein and lipid structure that can then be correlated with permeability measurements. Results show that temperature-induced changes in water permeability through SC are remarkably similar to data obtained with lipid bilayers. Spectral results show that changes in the lipid acyl chain conformation are highly correlated with water permeability. Taken together, these results strongly support the role of SC lipids in barrier function. Furthermore, they provide a mechanistic interpretation of permeant transport that is independent of pore formation. Finally, if the lipid biophysics of water transport through SC and lipid bilayers are mechanistically similar, why do the absolute rates differ by over 1000-fold? The answer may be found in the unique morphology of the SC, where corneocyte “bricks” may serve to increase the tortuosity of water transport.

Polar pathway, transepidermal water loss, and moisturization
J. L. Zatz, Ph.D., Department of Pharmaceutics, Rutgers University College of Pharmacy, Piscataway, NJ

The stratum corneum has traditionally been envisioned as a lipophilic barrier to skin penetration, and this viewpoint is in accord with most measurements. However, the slow but finite permeation of polar solutes through the skin, including water itself, suggests that there may be a special pathway for such molecules. The nature of this pathway has not been definitively identified, but several suggestions have been put forth. One is that polar molecules are transported via the shunts, such as the hair follicles and sweat gland ducts. Another notion is that spaces between polar head groups of the neutral intercellular lipids of the stratum corneum line up to permit water and other polar molecules to pass between the cells. Higuchi’s pore model accounts mathematically for much data, but does not identify the location of the “pores.” In recent experiments on simultaneous lidocaine and water transport through excised, dermatomed human skin, the enhancement of water penetration by surfactants was proportional to lidocaine enhancement. These data suggest that water is not restricted to the polar pathway in the presence of agents that perturb the intercellular lipids.

Iontophoresis and sonophoresis—Skin penetration through appendageal pathways?
Thomas S. Spencer, Ph.D., Director of Research and Development, Cygnus Research Corporation, Redwood City, CA 94063

Conventional delivery of active materials into and through the skin is based on the driving force of a concentration gradient from the active in a topical formulation to a lower concentration in the dermis. Iontophoresis actively delivers substances across the skin by employing electrical potential energy, while sonophoresis invokes ultrasonic waves to enhance the transport of actives across the skin. Unlike passive diffusion, active transfer of charged and neutral molecules across the skin changes the relative contribution of proposed hydrophobic, hydrophilic, and appendageal pathways of penetration. As the cosmetic industry moves towards treatment of skin aging and reversal, rather than concealment, of skin blemishes and discoloration, greater specificity of the area and delivered dose of cosmeceuticals will be needed to normalize different skin conditions.
INFORMATION FOR AUTHORS

The JOURNAL OF THE SOCIETY OF COSMETIC CHEMISTS publishes papers concerned with cosmetics or the sciences underlying cosmetics, as well as other papers of interest to SCC members. It is the function of the Editorial Committee to set standards, to judge the scientific merit of a paper, and to help in the editing of the paper and its preparation for press. The Editorial Committee is charged with the responsibility for the maintenance of the JOURNAL's high standards. It is therefore not the policy of the JOURNAL OF THE SOCIETY OF COSMETIC CHEMISTS to guarantee publication of all submitted papers.

All papers presented before a meeting or seminar of the SOCIETY OF COSMETIC CHEMISTS or before one of its sections, or those papers submitted directly to the Editor will be considered for publication in the Journal. Papers presented before the SOCIETY OF COSMETIC CHEMISTS or one of its sections are the property of the SOCIETY and may not be published in or submitted to other journals. Only if the JOURNAL OF THE SOCIETY OF COSMETIC CHEMISTS is unable to publish a presented paper may it be published in another journal of the author's choice.

SUBJECT MATTER

The JOURNAL will consider manuscripts for publication in the following categories, provided they are prepared in proper scientific style and adequately referenced:

1. Original Articles. Descriptions of original research work in cosmetics or related areas.

2. General Articles. Articles of a general character may be considered for publication providing they are of a scientific and technical nature. These articles may be concerned with newer analytical techniques, developments in dermatology, toxicology, etc.

3. Review Articles. Intended to present an overview of recent advances in a specific area related to cosmetics. The author of such a review is expected to be actively engaged in the area and capable of presenting a critical evaluation of published reports of a scientific and technical nature. Solicited by special invitation from the Editor and Editorial Committee; not subject to review by the Editorial Committee.

4. Preliminary Communications. Intended to provide for rapid dissemination of novel concepts and findings, such articles should not exceed four printed pages (approx. 10 double-spaced typed pages). Subject to review, but the time for editorial action will not exceed three weeks and the manuscripts will be published ahead of those submitted for regular processing.

5. Technical Notes. Relatively short manuscripts containing new information obtained by laboratory investigations, these do not contain the depth or extent of research involved in an Original Article.

6. Letters to the Editor. Comments on JOURNAL articles are invited, as well as brief contributions on any aspect of cosmetic or related science that does not warrant publication of a full-length paper in one of our other categories. May include figures and/or references, but brevity is necessary.
SUBMISSION OF MANUSCRIPTS

Manuscripts submitted for publication should include a covering letter and be addressed to the Editor, Dr. C. R. Robbins, Colgate Palmolive Research Center, 909 River Road, Piscataway, NJ 08854.

Manuscripts received by the Editor will be acknowledged and sent to two members of the Editorial Committee for review. Normally, the Editor will advise the author of acceptance, rejection, or need for revision of the manuscript within 10 weeks. Important: Manuscripts and the data therein must not have been published previously. Upon acceptance, the manuscript becomes property of the Society of Cosmetic Chemists and may not be produced in part or as a whole without written permission of the Editor.

PREPARATION OF MANUSCRIPTS

Stylebooks for the Journal of the Society of Cosmetic Chemists are: the American Chemical Society’s Handbook for Authors, the University of Chicago Press’s A Manual of Style, and Webster’s Third New International Dictionary. Authors whose papers include figures should also consult the excellent section on figure preparation in the American Institute of Physics’ Style Manual.

The responsibility for good grammar and correct sentence structure rests with the author. Organization should be thoughtful and not necessarily chronological. Unfamiliar or rare terms should be explained to make their meanings clear to all readers, especially those who are not well-versed in the language of the publication. Avoid all colloquialisms, jargon, and unusual abbreviations and be as clear and brief as possible in the manuscript.

The Editorial Committee will assist foreign authors with minor changes in text to bring it into good English usage. Foreign authors may ask a qualified colleague in the United States to assist with the approval of revisions and to correct meaning and intent wherever necessary.

Major revision or retyping of manuscripts cannot be undertaken by the Editor; these must be done by the author or his designated colleague. The suggestions which follow are intended to reduce the number of revisions and exchanges of correspondence needed prior to the publication of an article. Authors who follow these instructions closely will see their articles reviewed and published in the shortest possible time.

1. General Format: Manuscripts must be submitted in triplicate; an original and two copies. One set of illustrations should be included with each copy; the originals and two sets of photocopies. Manuscripts must be typed double-spaced on one side only of good quality bond paper, approximately 210 mm × 297 mm (8½ × 11’’). The title page of the manuscript should include the same name, address (including zip code) and affiliation of each author, as well as the title and date of the meeting where it was presented, if any.

2. Synopsis: Each article should be preceded by a brief but informative abstract of 100 to 200 words. The abstract should state the objective of the research, the experimental approach used, the principal findings, and the major conclusions. Follow the form used by Chemical Abstracts in preparing the synopsis.

3. Units of Measure. The SI (Système International) metric units are preferred, following the trend in the scientific community. Where English or cgs units must be used, they should be converted to SI and placed following in parentheses. Abbreviations such as m/s, ml, rpm, and µg are used without periods. It is requested that authors avoid all unusual notations, e.g., milligram per cent (mg %) or ppm are better expressed as mg/100g or mg/kg.
4. Abbreviations. Any abbreviation that will not be immediately understood by a non-expert reader should be defined in parentheses following its first appearance in the text. In most cases, both clipped words and acronyms are unpunctuated. Chemical names and formulae, especially where they may be handwritten, should be unambiguously clear to the editor. Some prefixes before names of organic compounds must be italicized, e.g., cis-, p-, tert-, etc. Consult the list of commonly-used abbreviations in the ACS Handbook.

5. Trade Names. A trade name must be followed by the sign "®." All common cosmetic ingredients should be referred to by their GENERIC names, as indicated in the latest edition of CTFA Cosmetic Ingredient Dictionary, The United States Pharmacopeia (U.S.P.) and the National Formulary (N.F.). Manufacturer’s designation may be included in parentheses. If a material is not listed, then the proprietary or trademarked name can be used, with the chemical composition and name and address of the manufacturer given in parentheses or footnote.

6. Structural Formulae. Structural formulae should be used only if absolutely necessary and if the chemical in question is not known to the reader. They should be numbered and referred to in the text by Arabic numerals.

7. Tables. Tables should be numbered consecutively, using Roman numerals. Appropriate captions should also be included.

8. Figures. Photographs, drawings and graphs are numbered consecutively in the text using Arabic numerals, e.g., (Figure 3). On the back of each, the figure number, title of paper, author's name, and the top of the figure should be indicated in pencil. Captions should be typed double-spaced on a separate sheet of paper. Drawings should be prepared on plain white drawing stock or vellum, using India ink or standard tapes. Their size should not exceed 210 mm × 297 mm (8½” × 11”). Original copies are strongly preferred, but glossy photographic reproductions are acceptable.

All numbers and letters must be approximately the same size on any individual figure, and of sufficient size to be legible after reduction to print size. All lettering except the caption should be considered part of the drawing and drawn in. TYPEWRITTEN LETTERING IS NOT ACCEPTABLE BECAUSE TYPING DOES NOT FORM THE CLEAN, SHARP LETTERING NEEDED FOR GOOD REPRODUCTION. Axis labeling on graphs should be read from the bottom or right-hand side and must be of sufficient size.

Authors must pay special attention to the quality of computer-generated graphs. The computer-driven printer should be set to give lines of sufficient density for reproduction. In many cases, the axes must be drawn in by hand. If computer-formed labeling on the plot is of poor quality, an illustrator should superimpose acceptable characters on the sheet.

Color photographs, where they are essential to the content of the paper, may be acceptable at the Editor’s discretion, and usually at extra cost to the author. Consult the Editor first.

If the author desires the return of original figures, he or she should so specify when he submits the manuscript. Figures will be held for 6 months following publication of the paper and then returned by mail.

9. References. References should be numbered in the order in which they appear in the text and should be listed in numerical order at the end of the article under “References.” Citations in the text should be on line and parenthesized, e.g., (6) or (11–13). The references to journal articles must appear in the following form:

(a) The first name, followed by initials and surname of each author.
(b) The full title of the paper (first word capitalized).
The following is an example of a correctly prepared journal reference; note all spacing and punctuation:

Book references are handled similarly and should include pertinent page numbers:

References to books containing contributions from authors appear as follows:

AFTER SUBMISSION OF MANUSCRIPTS

Rejection of Papers Submitted: Manuscripts not prepared in accordance with these directions or deemed to be outside the scope of articles published in the Journal will be returned to the author by the Editor.

Galley Proofs: After an author's paper is accepted and before final publication, galley proofs will be sent to the senior author for careful review and correction. Proofs should be verified against the manuscript. The Publication Committee does not accept this responsibility. Alterations in an article after it is typeset are made at the author's expense, and the author will be billed for such changes. Corrected galley proofs must be returned within 10 days to the Journal office.

Offprints and Reprints: The senior author of each paper will automatically receive 50 offprints free of charge, following publication of his paper. Additional offprints, or the more expensive stitched reprints, must be ordered at the time the galley proofs are returned and will be billed to the author. An order blank for this purpose is included with the galley proofs when it is sent to the author—return it with the galley.

Page Charges: The authors of a manuscript published in the Journal will be assessed a page charge of $35.00 per printed page. Any material set into type but ordered deleted from publication at the galley proof stage must also be paid for by the author. These charges will be invoiced to the senior author at the time of publication.
INDEX TO VOLUME 40

SUBJECT INDEX

Abrasiveness; evaluation of hand cleansers, 33
Absorption
 bands; fatty acids & metallic salt, B, moisture in skin, 151
 liposome-encapsulated cosmetics; skin, 51
 percutaneous; azone, D
 skin penetration of vitamins, 41
 TCC; soap, 75
Acetic acid; neutralizer; skin penetration, 41
Acetone; sunscreen ingredient; comedogenicity, E
Acetone/ether; water recovery properties of pseudoceramides; stratum corneum, J
Acetulan; comedogenic potential of preservatives, 135
Acetylated lanolin alcohol; comedogenic potential, 135
Acid
 acrylic; synergy of preservative system components, A
 amino; protein content in hair, 91
 arachidonic; alteration of Ia + Langerhans cells, 101, evaluation of anti-inflammatory ingredients (abstract), 243
 ascorbic; skin penetration, 119
 aspartic; proteins of hair, 91
 benzoic; permeability (abstract), 243
 caproic; role in body odor, B
 cysteic; proteins of hair, 91
 fatty; follicular keratosis, E, lipid bilayer vesicles, 51
 glutamic; proteins of hair, 91
 hexadecanoic; sebum composition, C
 iso-valeric; role in foot malodor, B
 lauric; comedogenicity, E
 linoleic; sebum composition, C
 myristic; comedogenicity, E
 octadecadienoic; sebum composition, C
 oleic; glyceryl monostearate composition, 215, sebum composition, C
 palmitic; glyceryl monostearate composition, 215, sebum composition, C
 perchloric; radiotracer experiments, 205
 perspiration; hair coloring, 65
production; preservation testing, 193
propionic; role in body odor, B
salicylic; permeability (abstract), 243
stearic; glyceryl monostearate composition, 215, lotion composition, 193, sebum composition, C, synthesis of amide derivatives, J
tetradecanoic; capillary gas chromatogram of spangler sebum, C
value in glyceryl monostearate; syneresis in cream, 215
Acne
 cosmetic, E
cyoctol; cutaneous metabolism, D
Acrylates/C10-30 alkyl acrylate cross polymer; lotion; synergy of preservative system components, A
Acrylic acid
 antimicrobial activity; nonionic o/w lotion, A
 synergy of preservative system components; survival curve slope method, A
Adsorption
 lipids in conditioners; removal of cationics, 205
 surface physical properties; hair, 173
Aerobic
 bacillus; preservation testing, 193
 bacteria; level of dandruff, 109
Aerobic plate counts; preservative efficacy methods, 193
Aerosols; effect of zinc oxide; deodorant development, B
Affinity; dyes to hair, 65
African; hair; electrophoretic analysis, 91
Agar
 media; kinetics of bacterial death, 193
 plate count methods; bacterial content, 21
 tryptic soy; test organisms for preservative system efficacy, A
Agar patch test; validation; antibacterial liquid soap, G
Age
 culture conditions; kinetics of bacterial death, 193
surface roughness parameters, 173
Air; flow resistance of dry hair; hydrodynamic
technique, I
Alanine; proteins of hair, 91
Alcohol
aliphatic; effect on solute penetration, 231
aqueous solution; cycloctol, D
cetearyl; lotion composition, 193
cream preparation, 215
lanolins; comedogenicity, E
synthesis of amide derivatives; water retention
in the stratum corneum, J
wool wax; TCC in soap, 75
Alcohol insolubles; soap composition;
antimicrobial activity, G
Alfonic 8,10-20 ether sulfate (SODS-1);
surfactant; removal of sebum from hair, C
Aliphatic; solvent; hand cleanser evaluation, 33
Aliphatic alcohol; solvent; effect on solute
penetration, 231
Alkali; preparation of cosmetics-carrying
liposomes, 51
Alkaline hydrogen peroxide; bleaching;
fluorescence emission of hair, F
Alkoxylated methyl glucoside; conditioning
agent for hair and skin (abstract), 243
Alkyl; chain; synthetic pseudoceramide
structure, J
Alkylated proteins; human hair; electrophoretic
analysis, 91
Alkyl ether sulfates; surfactant; staining
cationics on keratin, 205
Allantoin; lotion composition; preservative
efficacy testing, 193
Allergens
contact hypersensitivity reaction; Langerhans
cells, 101
evaluation of hand cleansers, 33
Allergic contact dermatitis
fluorescent activated cell sorting, 101
preservatives; comedogenic potential, 135
Alpha olefin sulfonate (AOS) detergents;
surfactant; staining cationics on keratin, 205
Aluminum chlorohydrate; efficacy of
quenchers formulated with hybrid powder on
axillary odors, B
Aluminum hydroxide wet gel; oil-in-water
cream preparation; stability, 215
Aluminum salts; antiperspirant mechanism in
controlling body odor, B
Amerchol L-101; oil-in-water cream
preparation; stability, 215
Amide; bonds; synthetic pseudoceramide
structure, J
Amines; dansylation of hair; damage
assessment, F
Amino acid; analysis; hair, 91
Aminomethylpropylamine; cosmetic base;
comedogenicity, E
Ammonium lauryl sulfate (ALS)
surfactant; antimicrobial testing, G
surfactant; detergency measurement, C,
staining cationics on keratin, 205
Ammonium salts; amphiphiles; lipid bilayer
vesicles, 51
Ammonium thioglycolate; raised cuticles;
surface topography of hair, 173
Amphiphilic lipids; liposome composition, 51
Amphotericin; dandruff; role of microflora, 109
Anaerobic
cell; level of dandruff, 109
growth; preservation testing, 193
Analysis
to-layer-skin diffusion/bioconversion model;
vitamin C penetration, 119
compositional; extracted sebum, C
electrophoretic; human hair proteins, 91
near-infrared reflectance; moisture in skin, 151
Anhydrous; lanolins; comedogenicity, E
Anionic
detergents; hand cleanser evaluation, 33,
removal of cationics from keratin, 205
oil-in-water lotions; dry leg regression studies,
151
ANOVA
determination of selective removal of sebum
components by surfactants, C
dry leg regression method; moisture in skin,
151
lidocaine diffusion; skin, 41
Antibacterial; liquid soap; validation of agar
patch test, G
Antibacterial solution; density of resident
microflora; dandruff, 109
Antibiotic; susceptibility testing; kinetics of
bacterial death, 193
Antifungal shampoo; density of microflora;
dandruff, 109
Antigen; IgA; immunity, 101
Antimicrobials; control of body odors, B
Antioxidants; skin immune reactions, 101
Antiperspirants; efficacy in quenching body
odor, B
Apocrine glands; secretions; effect on body
odor, B
Appearance
hair, ethnic groups, 91, external sebum, C,
geometrical properties, 173
skin; cosmetic moisturizing preparation, 151
Aquasol; lidocaine analysis; skin penetration, 41
Aquasol-2 LSC cocktail; radiotracer
experiments; cationics on keratin, 205
Aquous
alcoholic solution; cycloctol, D
cosmetics; bacteria content, 21
iso-valeric solution; headspace gas chromatography analysis in quenching short-chain fatty acids, B
liquid; preservative efficacy testing, 193
phase; syneresis of oil-in-water cream formulation, 215
receptor fluid; skin penetration, 41
rinse solution; hair-coloring process, 65
sodium hydroxide; synthesis of amide derivatives, J
solutions; alpha olefin sulfonate, 205
ammonium lauryl sulfate and alkyl ether sulfates, 205, detrimonium chloride, 205
hair with raised cuticles, 173, sodium deceth-2 sulfate, 205
surfactant; hair cleaning procedure, C
suspension; cosmetics-carrying liposomes, 51
tetrabutylammonium bromide in hexane; synthesis of amide derivatives, J
Arachidonic acid
la+ Langerhans cell alteration, 101
in-vitro release; evaluation of anti-inflammatory ingredients (abstract), 243
Arginine; hair; damage assessment, F, protein content, 91
Aromatic hydrocarbons; evaluation of hand cleansers, 33
Ascorbic acid; skin penetration, 119
Asian; hair, electrophoretic analysis, 91
Aspartic acid; proteins of hair, 91
Aspirin; skin penetration, 41
Aspergillus; fungal detection; bacterial content in cosmetics, 21
Assay
high performance liquid chromatography; skin penetration, 119
mouse ear swelling; antioxidants in immunity, 101
rabbit ear; comedogenic potential of preservatives, 135, follicular keratinization measurement, E
Autocorrelation functions; roughness measure; surface topography of hair, 173
Avocado oil; cosmetic ingredient; comedogenicity, E
Axilla; odor; role of short-chain fatty acids, B
Azone; percutaneous absorption; skin stripping, D
Bacillus cereus; synergy of preservative system components; efficacy testing, A
Bacillus sp.; synergy of preservative system components; efficacy testing, A
Bacillus subtilis; kinetics of bacterial death; preservative efficacy testing, 193
Bacteria
content; cosmetic formulations, 21
death; preservative efficacy testing, 193
effect on body odor, B
preservative efficacy testing, A
role in dandruff, 109
Bactometer; microbial monitoring; cosmetic formulations, 21
Band; absorption; fatty acid and metallic salt, B, near infrared reflectance analysis, 151
Barrier function; stratum corneum; effect of ceramides, J
Barrier properties
effect of protein and lipid; skin, 1
heat separated human epidermis to lidocaine, 41
skin; effect of solvents, 231
Beeswax
comedogenicity; skin care product ingredient, E
face cream composition; preservative efficacy testing, 193
Behentrimonium chloride; cationic agent in shampoo; effect on hair smoothness, 1
Behenyl erucate; comedogenicity; skin care product ingredient, E
Bentonite; cosmetic ingredient; comedogenicity, E
Benzoic acid; permeability; topical formulations (abstract), 243
Benzophenone-3; sunscreen formulation; photoprotection, 127
Benzophenone-4; sunscreen formulation; photoprotection, 127
Benzyl alcohol; saline solutions; synergism of preservative system components, A
Bilayer diffusion/bioconversion model; skin penetration; vitamins c & e, 119
Bilayer vesicles; lipid; nature of, 51
Binding
cationics on keratin; radiotracer experiments, 205
dansyl chloride; hair damage assessment, F
water; stratum corneum, 1
Bioavailability; TCC; soap, 75
Bioconversion; vitamins c & e; skin penetration, 119
Biotransformation; cutaneous; cyoctol, D
Biphase; water in skin, 151
Bis(hydroxymethyl)
lotions; effects on skin, 1
Black; hair; protein, 91
Bleaching; hair; color, 65, damage, F, removal of cationics, 205
Bleed; oil-in-water cream stability, 215
Blond; hair; proteins, 91, removal of cationics, 205
Bond
hydrogen; nature of water binding, 151
pseudoceramide structure; amide, J, carbon, J, ether, J, nitrogen, J

Boric acid; composition of washing bars; irritancy potential, H

Bovine trypsin; stratum corneum preparation; penetration, 41

Box method; measurement of fractal dimensions, 173

Broth
bacterial content; cosmetics, 21
inoculum; kinetics of bacterial death, 193

Brown; hair; method for damage assessment, F, protein content, 91, removal of sebum, C

Brownian motion; fractal models of rough surfaces, 173

Brushing; hair damage; fluorescent technique using dansyl chloride, F

Buffer
methanol/phosphate; skin stripping methodology, D
solution; preparation of cosmetics-carrying liposomes, 51
sulfur proteins; hair, 91
triton phosphate; quantification of microflora, 109

Bulk bath; cleaning process; removal of sebum from hair, C

Butanol; dermal resistance, 41

Butylated hydroxyanisole (BHA); phenolic compound; oxidants in immunity, 101

Butylated hydroxytoluene (BHT); phenolic compound; oxidants in immunity, 101

Butylene glycol; humectant; hair softening effect, I

Butyl stearate; comedogenicity; skin care product ingredients, E

CaCl2; synergy of preservative system components, A

Capacitance conductance meter; measurement; water-retaining capacity of stratum corneum, J

Caproic acid; role in body odor, B

Carbomer
lotion; synergy of preservative system components, A
thickening agent; comedogenicity, E

Carbon
atoms; red-80 dye-staining procedure, 205
soap surface; EDXA investigation, 75

Carmine; cosmetic ingredient;
comedogenicity, E

Cationic
behentrimonium chloride; evaluation of shampoo on hair softness, I
oil-in-water lotions; dry leg regression studies, 151
removal from keratin; dyestaining, 205

Caucasion; brown hair; method for damage assessment, F, protein content, 91

[14C carboxyl] lidocaine hydrochloride; skin penetration, 41

Cell; Ia+ Langerhan; immunity, 101

Cellophane; tape; skin stripping methodology, D

Cellulosic polymer; thickening agent;
comedogenicity, E

Ceramide; stratum corneum; water recovery, J

Ceteareth-20; lotion composition; preservative efficacy testing, 193

Cetearyl alcohol
emulsifying wax; comedogenicity, E
lotion composition; preservative efficacy testing, 193
oil-in-water lotion; dry leg regression studies, 151

Ceteth-2; washing anion; removal of cationics from keratin, 205

Ceteth-16; comedogenicity; skin care product formulation, E

Cetrimonium chloride (CTAC); surfactant;
staining cationics on keratin, 205

Cetyl acetate; lanolin additive;
comedogenicity, E

Cetyl alcohol
concentration in shampoo; effect on hair softness, I
lotion; effects on skin, 1
oil-in-water cream stability, 215
staining cationics on keratin, 205

Cetyl palmitate; comedogenicity; skin care product ingredients, E

Cetyltrimethylammonium bromide; liposomes, 51

Chelating agent; soap composition;
antimicrobial activity, G

Chemical
bleaching; hair damage, F
composition; hair, C
stresses; damage to hair surface, 173

Chemical properties
glyceryl monostearate; syneresis of oil-in-water cream, 215
membrane permeability; contact with solvents, 231

Chemical treatments; hair; alkylated proteins, 91

Chlorine; soap; TCC, 75

Chlorobutanol; receptor solution; skin penetration, 41, 231

Cholesterol
artificial sebum composition; removal by surfactants in shampoo, C
capillary gas chromatogram of Spangler sebum, C
cosmetics-carrying liposomes, 51
synthesis of amide derivatives; water retention in stratum corneum, J

Cholesterol ester; synthesis of amide derivatives; water retention in stratum corneum, J

Chromatograms; radioactivity; azone, D, cycoctol, D

Chromatography
sephadex; alkylated proteins in hair, 91
tape extracts; skin stripping, D

Chromium hydroxide; cosmetic ingredient; comedogenicity, E

Chromophore; melanin pigment; hair color, 65

Citric acid; soap composition; antimicrobial testing, G

\(^{14}\text{C}-\text{labelled compounds};\) metabolic processes;
azone, D, cycoctol, D

Clay; cosmetic ingredient; comedogenicity, E

Cleaning; hair; surfactants, C

Cleanser; hand; evaluation of, 33

Cleansing power; evaluation of hand cleanser, 33

Climate; effects on skin, 1

Clindamycin hydrochloride; ethanolic solution;
microflora in dandruff, 109

Closeness; shaving; perceptual evaluation, 141

Coagulase-negative cocci; scalp; role in dandruff, 109

Coal tar; comedogenic potential, 135

Cocamide DEA; shampoo formulation; hair roughness and softness, I

Cocoa butter
composition of washing bars; irritancy potential, H
cosmetic ingredient; comedogenicity, E

Cocoamphoglycinate; shampoo composition;
hair roughness and softness, I

Coconut acid; composition of washing bars;
irritancy potential, H

Coconut butter; cosmetic ingredient;
comedogenicity, E

Coconut oil; artificial sebum composition, C

Cohesion; stratum corneum; effect of ceramide chain length, J

Color
face cream composition; preservative efficacy testing, 193
hair; electrophoresis of proteins, 91, melanin precursors, 65
soap composition; antimicrobial activity, G

Colorimetric method; protein concentration;
hair, 91

Combability; hair attribute; role of cuticle, F

Comedogenicity; skin care products,
Comedogenic potential; DMDM hydantoin, 135, quaternium-15, 135
Comedone; formation; rabbit ear assay, 135

Commercial
liposome production, 51
shampoo products; hair roughness and softness, I
soaps; TCC, 75

Compass method; measurement of fractal dimensions, 173

Compatibility; skin; hand cleansers, 33

Composition
chemical; human hair, C
cream; emulsion instability, 215
hair proteins; ethnic groups, 91
hand cleansers, 33
sebum; change with age, C
shampoo products; softness effect on hair, I

Concentration
alcohol chain-length in wax;
comedogenicity, E
azone; cutaneous metabolism, D
bacteria content; cosmetics, 21
CU(II); melanization rate, 65
glycerol; moisture in skin, 151
hydrogen peroxide; color modulation, 65
isovaleric acid in fatty acids; vapor phase of gas chromatography, B
phenol compounds; effects on immunity, 101
polyquarternium-10; hair roughness and softness, I
preservatives; cosmetic formulation, 135, efficacy testing, A
soiling solution; hair sebum removal, C
solvents; effect on solute penetration, 231
test organisms; preservation efficacy, 193
vitamin C; skin penetration, 119
water; thermodynamic diffusion coefficients, I

Conditioner
adsorption; surface topography of hair, 173
alcohol composition; methyl glucoside quaternary (abstract), 243
bacterial content, 21
effect on flow resistance; hair, I
hair soil; surfactant removal, C
lipid component; removal of cationics from keratin, 205
noncomedogenic formulations, E

Conductance value; pseudoceramide application to stratum corneum; water-retaining capacity, J

Cone; shape; amphiphilic lipids, 51

Cone penetrometer; measurement of cream consistency, 215

Consistency; emulsion instability; oil-in-water cream, 215
antibacterial soap; appgar patch test, G
mildness of washing products; flex wash
test, H
preparation of cosmetics-carrying liposomes, 51
sebum removal from hair; surfactant
screening, C
Detergent-scrub method; quantification of
microflora; dandruff, 109
Dextrin; composition of washing bars; irritancy
potential, H
Dextrose; culture media composition;
preservation testing, 193
Diagnostic tests; occurrence of syneresis in
cream; glyceryl monostearate variations, 215
Dial micrometer; follicle width measurement;
keratosis, E
Dicetyl phosphate; cosmetics-carrying
liposomes, 51
Dielectric method; nature of water absorption;
stratum corneum, 151
Diethyl ether; solvent; preparation of
cosmetics-carrying liposomes, 51
Differential scanning calorimetry
glyceryl monostearate characterization; US &
UK sourced, 215
nature of water absorption; stratum corneum,
151
Diffusion
in vitro; permeability of skin, 41
vitamin C; skin penetration, 119
water flux; skin, 1
Diglyceride; glyceryl monostearate composition;
oil-in-water cream stability, 215
Di-hexadecyldimethylammonium chloride;
ammonium salt; amphiphiles, 51
5,6-dihydroxindole; melanin precursor; hair-
coloring process, 65
Dilution systems; bacterial content; cosmetics, 1
Dimethicone
lotion composition; preservative efficacy
testing, 193
oil-in-water cream preparation; stability, 215
Dimethyl; lotion; effects on skin, 1
1-dimethylamino-naphthalene-5-sulfonyl-
chloride; fluorescence technique; hair
damage, F
Dimethylisosorbide; solvent; effect on solute
penetration, 231
Dipotassium phosphate; culture media
composition; preservation testing, 193
Disodium ricinoleamido MEA-sulfosuccinate;
soap composition; antimicrobial testing, G
Distribution; sebum on hair; compositional
change, C
Dithiothreitol; extraction procedure; hair
protein, 91
DMDM hydantoin
comedogenic potential, 135
soap composition; antimicrobial testing, G
DNA; repair of UV damage; skin (abstract), 243
1-dodecylazacycloheptan-2-one([1-14C])-
dodecyl; skin stripping; cutaneous metabolism
of topical drugs, D
Dodecyl sulfates; removal of cationics from
keratin, 205
Donor solution; skin penetration; vitamins, 119
DOPAquinone; melanogenesis; hair coloring, 65
Drifting; impedance measurement; bacterial
content in cosmetics, 21
Drugs
hair; effects on surface roughness parameters,
173
topically applied; cutaneous metabolism, D
Dry leg regression method; moisture in skin,
151
Dryness
method for skin irritation, H
skin; application of pseudoceramides, J
DSC measurements; thermal analysis system;
oil-in-water cream, 215
Durability; oxidative hair color, 65
Dutch law for food and commodities; hand
cleanser composition; soap, 33
Dye
cosmetic ingredient; comedogenicity, E
hair-coloring process, 65
Dyestaining; removal of cationics; keratin, 205
Eccrine gland; secretions; effect on body
odor, B
Edema; irritancy; skin care product
formulations, E
Edetate disodium; oil-in-water cream
preparation; stability, 215
Efficacy
anti-fungal shampoo; dandruff, 109
deoarant; TCC, 75
hand cleansers, 33
hybrid powder; body odor quencher, B
moisturizer; skin, 151
preservative testing; kinetics of bacterial
death, 193, nonionic lotions, A
removal of sebum on hair by surfactants, C
shaving preparations, 141
skin-stripping; cutaneous metabolism of
topical drugs, D
Efficiency; encapsulation; liposomes, 51
EGME; sunscreen ingredient; comedogenicity, E
Eicosane; extraction of sebum from hair, C
Elasticity; softness effect of hair cosmetics, I
Elbow wash test; skin compatibility; hand cleanser evaluation, 33
Electrical conductivity; measurement of water content; in vivo, 151
Electrodynamometer; gas bearing; in vivo simulation apparatus, 1
Electron spectroscopy for chemical analysis (ESCA); hair damage, F
Electrophoretic analysis; alkylated proteins; human hair, 91
Electrostatic forces; binding of keratin fibers with cationic detergents, 205
Emollient; lipophilic thickening agent; glyceryl monostearate, 215
Emulsion multi-phase (abstract), 243
nonionic; kinetics of bacterial death, 193
nonionic systems; preservative efficacy testing, A
semisolid systems; pharmaceutical cream base, 215
stabilization; adsorbed macromolecules (abstract), 243
water-binding characteristics; skin, 1
Encapsulation; liposomes; cosmetics, 51
Endogenous; vitamin c; skin penetration, 119
Environment effect on hair damage, F
water content of stratum corneum, 151
Enzymatic hydrolysis; removal of sebum; surfactants, C
Enzyme cyclooxygenase; antioxidants in immunity, 101
deactivation; decay law, 119
DNA repair of UV damage in skin (abstract), 243
tyrosinase; melanogenesis, 65
Epichlorohydrin; synthesis of amide derivatives; water retention in stratum corneum, J
Epidermal necrosis; irritancy; skin care product formulations, E
Epidermis human cadaver; sunscreen protection, 127
immune responsiveness; antioxidants, 101
lidocaine penetration, 41
liposome-encapsulated cosmetics, 51
metabolism; cyoctol, D
moisture in skin, 151
mouse; sunscreen protection, 127
Epithelium; irritants; skin care products, E
Equations absorbance; spectrophotometric quantitative analyses, 151
elasticity ratio; softness effect of hair cosmetics, I
exponential decay law for activity of skin enzymes, 119
fanning friction factor equation; measurement of hair flow resistance, I
generation time; bacterial content in cosmetics, 21
impedance to an applied shear force, I
lidocaine penetration over time; skin, 41
quenching mechanism of zinc oxide on body odor, B
rate of smoothness decline; shaving, 141
rayleigh ratio; liposome characterization, 51
resistance of a diffusion barrier, 41
sun protection factor; transmission measurement, 127
total color change; hair, 65
Erythema evaluation of hand cleansers, 33
irritancy; skin care product formulations, E
mildness of wash products; flex wash test, H
Erythromycin; skin permeation; effect of enhancer pretreatment (abstract), 243
Escalol 507; sunscreen formulation; photoprotection, 127
Escherichia coli antimicrobial testing of soaps, G
bacterial content in cosmetics, 21
kinetics of bacterial death; preservative efficacy testing, 193
synergy of preservative system components; efficacy testing, A
ESR method; fusion and leakage processes; cosmetics-carrying liposomes, 51
Ester comedogenicity; skin care product ingredients, E
creem preparation, 215
value; glyceryl monostearate, 215
Ethanol alkylolation procedure; hair, 91
effect on permeant flux; theophylline, 231, methylparaben, 231
organic solvent; preparation of cosmetics-carrying liposomes, 51
synthesis of amide derivatives; water retention in stratum corneum, J
TCC quantity; soap, 75
topical administration; epidermal immunity, 101
water solution; microflora in dandruff, 109
Ethanolamide; synthesis of amide derivatives; water retention in stratum corneum, J
Ethanolamine; amphiphiles; lipid bilayer vesicles, 51
Ethanolic solution; microflora in dandruff, 109
Ether; comedogenicity; skin care product ingredients, E
Ethnicity; hair; alkylated proteins, 91
Ethoxylation
- anionic detergents; staining cationics on keratin, 205
- lanolin derivatives; comedogenicity, E
Ethylene glycol ester; oil-in-water cream preparation; stability, 215
Ethylhexyl P-methoxycinnamate; sunscreen formulation; photoprotection, 127
Euclidean geometry; roughness; surface topography of hair, 173
Eugon broth; dilution system; bacteria content, 21
Eumelanin; metal catalysis; color formation in hair, 65
European; hair; electrophoretic analysis; 91
Eusolex 232; sunscreen formulation; photoprotection, 127
Evaluation
- agar patch test; detection of antibacterial activity, G
- mildness; personal washing products, H
- perceptual; shaving closeness, 141
Evaporimeter; transepidermal water loss measurement; evaluation of hand cleansers, 33, skin, 1
Exaggerated use tests; mildness of washing products; human skin, H
Exogenous; vitamin c; skin penetration, 119
External sebum; removal from hair; surfactants, C
Extraction procedure; internal sebum removal; hair, C
Eyeshadow; bacterial content, 21
Fatty acid
- build-up in hair; ammonium lauryl sulfate washing, C
- chain length; follicular keratosis, E
- cream preparation, 215
- glyceryl monostearate; syneresis effect in oil-in-water cream, 215
- sebum composition; removal by surfactants in shampoo, C
- short chain; contribution to body odor, B
- soap composition; antimicrobial activity, G
Fatty acid chain; liposome composition, 51
Fatty acid glyceride; glyceryl monostearate composition; oil-in-water cream stability, 215
Fatty alcohols; in conditioning products; removal of cationics from keratin, 205
FD&C red #4; soap composition; antimicrobial activity, G
FD&C yellow #5; soap composition; antimicrobial activity, G
Feel
- hair attributes; role of cuticle, F
- hair surface; geometrical properties, 173
Fiber; hair; sebum removal, C
Fick’s law of diffusion; water flux; skin, 1
Finger imprint method; in comparison with agar patch test, G
Finger squeeze; cleaning process; removal of sebum from hair, C
Fissures; evaluation of hand cleansers, 33
Flash chromatography; synthesis of amide derivatives; water retention in stratum corneum, J
Flex wash test; mildness evaluation; personal washing products, H
Flow; human hair; hydrodynamic technique, I
Flow cytometry; antioxidants in immunity, 101
Flow rate; metabolic profiling; 4c-azone, D, 4c-cyoctol, D
Flow-through cells; skin penetration, 41
Fluidity; temperature and water effects on skin, 1
Fluorescein isothiocyanate; antibodies; epidermal immunity, 101
Fluorescence; fusion and leakage processes; cosmetics-carrying liposomes, 51
Fluorescence spectrophotometer; steady-state light-scattering measurement; liposomes, 51
Fluorescence technique; dansyl chloride; hair damage, F
Fluorescent activated cell sorting (FACS); antioxidants in immunity, 101
Fluorescent dye; 1-dimethylamino-naphthalene-5-sulfonyl chloride; hair damage assessment, F
Fluorimetric technique; cholesterol content; extracted lipid/sebum, C
Flux
- formation of melanin; in vivo, 65
- influence of membrane thickness, 231
- lidocaine penetration; skin, 41
- ratio; skin/solvent interaction, 231
- water; skin, 1
Foam; use in cosmetics (abstract), 243
Follicle; rabbit ear assay; comedogenic ingredients, E
Follicular hyperkeratinization; comedogenic potential of preservatives, 135
Follicular keratosis; skin care products, E
Food; phenolic compounds; immunity, 101
Formalin; microscopic follicle measurement; keratosis, E
Formulation
- conditioning products; ratio of lipid/cationic, 205
- cosmetics; solvents, 231, vitamins c and e, 119
- hair cleaning products, C
- oil-in-water cream; stability, 215
- skin care products; comedogenicity, E
Hexadecyl dodecanoate; capillary gas chromatogram of spangler sebum, C
Hexadecyl hexadecanoate; capillary gas chromatogram of spangler sebum, C
Hexadecyl octadecanoate; capillary gas chromatogram of spangler sebum, C
Hexadecyl tetradecanoate; capillary gas chromatogram of spangler sebum, C
Hexane; sebum solution; removal from hair, C
Hexanol; dermal resistance, 41
High molecular weight ester; capillary gas chromatogram of spangler sebum, C
High-pressure extrusion; preparation of cosmetics-carrying liposomes, 51
High-pressure jets; preparation of cosmetics-carrying liposomes, 51
High pressure liquid chromatography (HPLC) analysis of amount and composition of extracted sebum, C
radiochemical purity determination; azone, D, cyoctol, D
skin penetration profile; vitamin c, 119
TCC content determination; soap, 75
High-resolution capillary gas chromatograph; sebum analysis; extraction from hair, C
High-sulfur protein (HSP); hair; electrophoresis, 91
Histidine; hair; method for damage assessment, F, protein content, 91
Histidine hydrochloride; acid perspiration; hair color, 65
Histological structure; human hair, C
H₂O; lotion; effects on skin, 1
Homomenthyl salicylate; sunscreen formulation; protection, 127
Homopolymer; acrylic acid; synergy of preservative system components, A
Hormone; activity in sebum production; age effect, C
Horny layer; scaling; P. ovale, 109
Human body odors; development of a hybrid powder, B
dry leg regression studies, 151
hair; coloring, 65, electrophoretic analysis, 91, removal of sebum components, C, softness and roughness, I
lidocaine penetration; skin, 41
skin; comedogenicity of skin care product ingredients, E, metabolism of topically applied drugs, D, penetration, 231, repair of ultraviolet light damage (abstract), 243 stratum corneum; effects of temperature, 1, water-retaining properties, J
Humectants; hair softening effect; shampoos and rinses, I
Humidity
effect on skin surface, 1
hair weight; sebum removal, C
hydrodynamic technique; measurement of interfiber friction of dry hair, I
transepidermal water loss measurement; hand cleanser evaluation, 33
Hybrid powder; zinc oxide, deodorant ability, B
Hydration; rat skin; penetration, 231
Hydration force; liposome structure, 51
Hydrocarbons
human hair soil; surfactant removal, C
solvent; evaluation of hand cleansers, 33
Hydrocarbon chain; wax; comedogenicity, E
Hydrochloric acid; pH; shampoo, 65, skin penetration, 41
Hydrodynamic technique; hair softness and roughness, I
Hydrogel; technology and application (abstract), 243
Hydrogen; bonds; nature of water binding, 151
Hydrogen peroxide
chemical bleaching; effect on fluorescence emission of hair, F
color modulation and removal; hair, 65
Hydrolysate; amino acid analysis; hair, 91
Hydropil; solute type; lipid amphiphile assembly, 51
Hydrophobic force; liposome structure, 51
Hydroxyapatite; headspace gas chromatography analysis for evaluating quenching compounds on body odor, B
Hydroxyl group
near infrared reflectance analysis; moisture in skin, 151
synthetic pseudoceramide structure; effect on water-retention in stratum corneum, J
Hydroxypropyl cellulose; lidocaine penetration; skin, 41
Hygrometer; temperature measurement; in vivo simulation apparatus, 1
Ia + Langerhan cells; phenolic compounds; immunity, 101
Imidazoles; dyesalination of hair; damage assessment, F
Imidazolidinedione; lotion; effects on skin, 1
Immunology; skin; role of antioxidants, 101
Impedance procedure; bacterial content; cosmetic formulations, 21
Indian; hair; electrophoretic analysis, 91
Indomethacin; antioxidants in immunity, 101
Inflammation; nucleated cells in scales; dandruff, 101
Infrared spectroscopy; measurement of water content; in vivo, 151
Inoculum; preparation; kinetics of bacterial death, 193
Inositol; amphiphiles; lipid bilayer vesicles, 51
Instability; emulsion; oil-in-water cream, 215
Instrumentation
 apparatus to detect microbial growth by
 changes in electrical impedance, 21
 apparatus to simulate temperature and water
 activity on skin, 1
Integrity
 fuzzy rat skin; effect of solvents on solute
 penetration, 231
 skin, 41
Intensity
 fluorescence; assessment of hair damage, F
 fourier transform; sine waves, 173
 shaving closeness; perceptual evaluation, 141
 sulfur proteins; hair, 91
Internal sebum; removal from hair;
 surfactants, C
In vitro
 antioxidant exposure; epidermal immunity, 101
 application of anti-fungal shampoos; dandruff, 109
 arachidonic acid release; model for evaluation
 of anti-inflammatory ingredients (abstract), 243
 exponential decay law; skin penetration of
 vitamins, 119
 lidocaine penetration; skin, 41
 moisture in skin; instrumental methods, 151
 permeability; salicylic and benzoic acid
 (abstract), 243
 permeation of tolmetin; hairless mouse skin
 (abstract), 243
 photoprotection; sunscreen compounds, 127
 release experiments; skin penetration
 (abstract), 243
 removal of sebum; hair, C
 solute penetration; effect of solvents, 231
 synergy of preservative system components;
 survival curve slope method, A
 temperature and water effects; pig skin, 1
In vivo
 agar patch test; antibacterial activity of soap, G
 application of anti-fungal shampoo; dandruff, 109
 cutaneous metabolism; topically applied
 drugs, D
 exposure to monobenzyl ether of
 hydroquinone; epidermis immunity, 101
 melanin production, 65
 moisture in skin; near-infrared reflectance
 analysis, 151
 nail polish testing; effects of shade families
 (abstract), 243
 removal of sebum; hair, C
 sun protection factors, 127
 temperature and water activity effects on
 skin, 1
Iodine; value; glyceryl monostearate, 215
Ion; metal; rate of color development, 65
Ion exchange analysis; hand cleanser
 composition; nonionic detergents, 33
Iron oxide; cosmetic ingredient;
 comedogenicity, E
Irritancy
 hand cleansers, 33
 personal washing products; flex wash test, H
 skin care products; ingredients, E
Irritant contact dermatitis; evaluation of hand
 cleansers, 33
Isocratic elution; metabolic profiling; topical
 drugs, D
Isoleucine; proteins of hair, 91
Isopropyl isostearate; comedogenicity; skin care
 product ingredients, E
Isopropyl myristate
 comedogenicity; potential, 135
 skin care products, E
 face cream composition; preservative efficacy
 testing, 193
Isopropyl palmitate; lotion composition;
 preservative efficacy testing, 193
Isostearyl neopentanoate; comedogenicity; skin
 care product ingredients, E
Isotherms; water sorption; skin, 1
Iso-valeric acid; role in foot odor, B
Jojoba oil; comedogenicity; skin care
 product ingredients, E
Kaolin; cosmetic ingredient; comedogenicity, E
Keratin
 fibers; composition, C, properties, C,
 structure, C
 melanogenesis; hair coloring, 65
 removal of cationics; dyestaining, 205
 temperature and water effects, 1
Keratinization; neutrophils; dandruff, 109
Keratosis; irritants in skin care products, E
Kinetics
 bacterial death; preservative efficacy testing,
 193
 transepidermal water loss, 1
 vitamin e bioconversion; skin penetration, 119
 water desorption studies; porcine skin, 151
Koch curve; fractal geometry; surface profile,
 173
Lactic acid; acid perspiration; hair color, 65
Lag time
 influence of membrane thickness, 231
 lidocaine diffusion; skin, 41
 skin penetration; vitamin c, 119
Lamellar; structure; water retention and
 pseudoceramide, J
Langerhan cells; phenolic compounds; immunity, 101
Lantionine; proteins of hair, 91
Lanolin; water/lipid solubility; comedogenicity, E
Lanolin alcohol; oil-in-water cream preparation; stability, 215
Lanolin oil; composition of washing bars; irritancy potential, H
Lard glyceride; lotion composition; preservative efficacy testing, 193
Laumamide DEA; soap composition; antimicrobial testing, G
Laureth sulfate; shampoo composition; hair softness and roughness, I
Lauric acid
comedogenicity; skin care product ingredients, E
soap composition; antimicrobial activity, G
Lauryl betaine; shampoo composition; roughness effect, I
Lauryl ether sulfate (LES); shampoo; dandruff, 109
L-DOPA; melanogenesis; hair coloring, 65
Leakage processes; preparation of cosmetics-carrying liposomes, 51
Lecithin
growth of test organisms; synergy of preservative system components, A
inoculum preparation in preservation testing, 193
liposome composition, 51
Length
alkyl chain; synthetic pseudoceramide in water recovery, J
anionics; removal of cationics from keratin, 205
fatty acids; follicular keratosis, E
hair; removal of sebum, C, surface profile, 173
Letheen broth; aerobic plate counts; preservation testing, 193
Leucine; proteins of hair, 91
Leukotrienes; Ia + Langerhans cell alteration, 101
Lidocaine; penetration; skin, 41
Lightfastness; hair coloring; melanin precursors, 65
Light reflectance; evaluation of skin condition (abstract), 243
Light-scattering technique; measurement of vesicle size; liposomes, 51
Linear regression
preservative efficacy testing; kinetics of bacterial death, 193
synergy of preservative system components, A
Linoleic acid; artificial sebum composition, C
Lipid
bilayer vesicle; liposome structure, 51
chain length; comedogenicity in cosmetic products, E
conditioning products; removal of cationics from keratin, 205
human hair soil; surfactant removal, C
membrane; peroxidation, 119
skin surface; TCC soaps, 75
stratum corneum; viscoelasticity, 1, water-retaining properties, J
Lipophilic; character of glyceryl monoesterate; US and UK sourced, 215
Liposomes (abstract), 243
cosmetic tool, 51
DNA repair enzyme; skin (abstract), 243
surfactant interactions; skin irritation (abstract), 243
Lipstick; pigment dispersions; quality of (abstract), 243
Liquid; hand soaps; agar patch test for bacteriostatic activity, G
Liquid bleed; emulsion instability; oil-in-water cream, 215
Liquid crystals (abstract), 243
Liquid crystal phase; lipid bilayer vesicles; nature of, 51
Liquid emollient esters; cream preparation, 215
Liquid scintillation counting
lidocaine analysis; skin penetration, 41
skin penetration; vitamins C and E, 119
Liquid scintillation spectrometer; metabolic profiling; 4c-azone, D, 4c-cytoxol, D
Lithium; comedogenicity; cosmetic ingredient, E
Location; melanin dye; hair coloring, 65
Long-chain fatty acids; solid; cream preparation, 215
Lotion
aqueous; bacteria content, 21
glycerol/mineral oil based; water desorption in skin, 151
kinetics of bacterial death; preservative efficacy testing, 193
nonionic; preservative efficacy testing, A
oil-in-water; dry leg regression studies, 151
sunscreen; protection factor, 127
thickening agent; comedogenicity, E
Low-sulfur proteins (LSP); hair, 91
Luster; hair attributes; role of cuticle, F
Lysine; hair; damage assessment, F, protein content, 91
Magnesium; metallic base; comedogenicity in skin care products, E
Magnesium aluminum silicate; face cream composition; preservative efficacy testing, 193

Purchased for the exclusive use of nofirst nolast (unknown)
From: SCC Media Library & Resource Center (library.scconline.org)
Magnesium omadine; anti-fungal shampoo; dandruff, 109
M-cresal; saline solution; synergy of preservative system components, A
Magnesium silicate; soap composition; antimicrobial activity, G

Measurement
color value; hair, 65
cream consistency; universal cone penetrometer, 215
detergency; surfactants, C
dSC; oil-in-water cream, 215
follicular keratinization; rabbit ear assay, E
fractal dimensions, 173
light-scattering; liposome characteristics, 51
resistance to flow over human hair, I
roughness; surface topography of hair, 173
shaving closeness; using split-face and full-face shaving protocol, 141
sunscreen protection factors; transpore tape, 127
transepidermal water loss; hand cleanser evaluation, 33
vesicle size, 51
water binding by excised tissue, 151
water content; in vivo, 151
water-retaining capacity of stratum corneum, J
x-ray diffraction; oil-in-water cream stability, 215

Mechanical
hair strength; role of cortex, F
stresses; damage to hair surface, 173
Mechanical deformation; measuring water content; in vivo, 151
Mechanical properties; skin, 1
Media; culture; preservative efficacy test methods, 193
Medication; culture; preservative efficacy test methods, 193
Melanin
hair coloring, 65
role in hair damage; exposure to ultra violet light, F
Melanogenesis; raper-mason scheme; hair coloring, 65
Melanosome; formation of melanin; in vivo, 65
Melting point
glycerol monostearate; oil-in-water cream stability, 215
methyl paraben, 231
propyl paraben, 231
theophylline, 231
Membrane
lipid; peroxidation, 119
lipid bilayer; liposome structure, 51
thickness; influence on flux and lag time, 231

Metabolism
arachidonic acid; antioxidants in immunity, 101
bacteria; culture medium, 193
cutaneous; topically applied drugs, D
vitamins; skin penetration, 119
Metabolites; cyoctol; stratum corneum, D
Metal
ion; rate of color development, 65
organic molecule; comedogenicity, E
Metal ions; pseudomonas synergy in preservative systems, A
Metallic salts; conversion from short-chain fatty acids; body odor, B
Metallurgical parameters; roughness measure; surface topography of hair, 173
Metal salts; hair coloring; melanin precursors, 65

Methanol
effect on flux of permeants; theophylline, 231, methylparaben, 231
rat skin integrity, 231
skin penetration, 41
skin stripping methodology, D
Methanol/phosphate; buffer; azone, D
Methionine; proteins of hair, 91
Methodology
agar patch test, G
colorimetric; protein in hair, 91
differential scanning colorimetry; glyceryl monostearate characterization, 215
dry leg regression; moisture in skin, 151
ESR; fusion and leakage processes, 51
finger imprint method, G
flash chromatography; synthesis of amide derivatives, J
flex wash test; evaluation of personal washing products, H
flow cytometry; antioxidants in immunity, 101
fluorescence; fusion and leakage processes, 51
fluorescent activated cell sorting; antioxidants in immunity, 101
fluorimetric; cholesterol in sebum, C
fourier transform and fractal analysis; hair surface topography, 173
fourier transform infrared spectrophotometry; quenching of short-chain fatty acids, B
gas chromatography; hand cleanser composition, 33
gas liquid chromatography; composition of lipid in hair, C
gel filtration; preparation of cosmetics-carrying liposomes, 51
gravimetric analysis; hand cleanser composition, 33, lipid assessment in hair, C
headspace gas chromatography; ability of metal to quench short-chain fatty acids, B
high-pressure extrusion; preparation of cosmetics-carrying liposomes, 51
high-pressure liquid chromatography; determination of amount and composition of extracted sebum, C, skin penetration, 119
hydrodynamic technique; flow resistance and softness of human hair, I
image analysis technique; shaving closeness, 141
impedimetric procedure; bacterial content in cosmetics, 21
in-vitro instrumental methods; triphasic nature of water absorption, 151
ion exchange analysis; hand cleanser composition, 33
light scattering; vesicle size measurement, 51
liquid scintillation counting; lidocaine analysis, 41, skin penetration, 119
measurement of fractal dimensions; rough surfaces, 173
methylene blue method; hand cleanser composition, 33
microfluidization; large-scale liposome production, 51
mixing of high-pressure jets; preparation of cosmetics carrying liposomes, 51
near-infrared reflectance spectroscopy; moisture in skin, 151
NMR; vesicle size measurement, 51
preservative efficacy testing; United States pharmacopeia, 193, cosmetic toiletry and fragrance association, 193, linear regression, 193, accelerated preservative test, 193, presumptive challenge test, 193
profilometry; geometry of surfaces, 173
reverse-phase evaporation (REV); preparation of cosmetics-carrying liposomes, 51
sensitive fluorescence technique; hair damage, F
sensory perception technique; shaving closeness, 141
skin stripping; metabolism of topically applied drugs, D
sonication; preparation of cosmetics-carrying liposomes, 51
spectrophotometric; lipid assessment in hair, C staining procedure; cationics on keratin, 205
survival curve slope; synergy of preservative system components, A
thin-layer chromatography; composition of lipid in hair, C
visual scoring; evaluation of hand cleansers, 33
wire mesh bleed test; syneresis in cream, 215
6-(5-methoxyhept-1-yl)bicyclo[3.3.0]octan-3-one ([14C]-carbonyl); skin stripping; cutaneous metabolism of topical drugs, D
Methylcarboxylate; synthesis of amide derivatives; water retention in stratum corneum, J
Methyl cocoyl taurate detergents; shampoo composition; hair roughness effect, I
Methylene blue method; hand cleanser composition; anionic detergents, 33
Methyl gluceth-20; oil-in-water cream preparation; stability, 215
Methyl paraben comedogenic potential; cosmetics, 135
lotion; effects on skin, 1
permeant; effect of solvents on solute penetration, 231
preservative system; lotion, 193
synergy of preservative system components; survival curve slope method, A
Moxenone BP; sunscreen formulation; photoprotection, 127
Micelle (abstract), 243
amphiphilic lipid assembly, 51
solubilization; oily soil removal, C
TCC transer; soap, 75
Microemulsifier; liposome production, 51
Microfine titanium dioxide; sunscreen formulation; photoprotection, 127
Microflora; role in dandruff, 109
Microfluidization; liposomes; commercial development, 51
Microorganism; quantification; dandruff, 109
Microwave method; nature of water absorption; stratum corneum, 151
Mildness; personal washing products; flex wash test, H
Mineral oil composition of washing bars; irritancy potential, H
cream preparation, 215
D&C red pigment; comedogenicity and irritancy of cosmetic ingredients, E
lotion composition; preservative efficacy testing, 193
nonionic lotion formula; preservative efficacy testing, A
oil-in-water lotion; dry leg regression studies, 151
Mink oil; cosmetic ingredient; comedogenicity, E
Model; hairless mouse skin; penetration, 41
Moisture; skin; near-infrared reflectance spectroscopy, 151
Moisturizer evaluation; dry leg regression method, 151
formulation; comedogenicity of ingredients, E
Moisturizing agent; encapsulation of; liposomes, 51
Moisturizing lotion; effect on skin, 1

Purchased for the exclusive use of nofirst nolast (unknown)
From: SCC Media Library & Resource Center (library.scconline.org)
Molds
- preservative efficacy testing; cosmetics, 193
- testing procedure; bacterial content in cosmetics, 21

Monobenzyl ether of hydroquinone (MBEH);
- antioxidants; immunity, 101

Monoethanolamine; pH; shampoo, 65

Monoglycerides; oil-in-water cream stability, 215

α-monomethyl heptadecyl glyceryl ether;
- application of pseudoceramides; water retention in stratum corneum, J

Mouse
- epidermal immunity; antioxidants, 101
- epidermis; sunscreen protection, 127
- lidocaine penetration, 41
- skin; penetration of vitamins, 119, permeation of tolmetin (abstract), 243, repair of ultraviolet damage (abstract), 243

Mousse
- hair soil; surfactant removal, C

Multilamellar vesicles;
- preparation of cosmetics-carrying liposomes, 51

Multiple regression analysis;
- free and bound water binding to skin, 151

Myristic acid; comedogenicity; skin care product ingredient, E

Myristyl myristate;
- comedogenicity; skin care product ingredient, E

Na2EDTA; tap water; synergy of preservative system components, A

Nail polish;
- performance; effect of shade families (abstract), 243

N-alkanols;
- skin permeability, 231

Na-stearate/palmitate;
- distribution; soap with TCC, 75

N-docosane;
- capillary gas chromatogram of spangler sebum, C

N-dotriacontane;
- capillary gas chromatogram of spangler sebum, C

Near infrared reflectance spectroscopy;
- skin; moisture, 151

N-eicosane;
- capillary gas chromatogram of spangler sebum, C

Neutralizing agent
- NaOH; effect on antimicrobial activity in lotion, A
- TEA; effect on antimicrobial activity in lotion, A

Neutrophils;
- epidermis; dandruff, 109

N-hentriacontane;
- capillary gas chromatogram of spangler sebum, C

N-heptacosane;
- capillary gas chromatogram of spangler sebum, C

N-tricosane;
- capillary gas chromatogram of spangler sebum, C

Nipastat;
- synergy of preservative system components, A

Nitrogen
- bond; synthetic pseudoceramide structure, J
- human body malodors, B
- humidity control; in vivo simulation apparatus, I

Normal use tests;
- mildness of cleansing products; human skin, H

NMR technique;
- measurement of vesicle size; liposome, 51

N-nonacosane;
- capillary gas chromatogram of spangler sebum, C

N-octacosane;
- capillary gas chromatogram of spangler sebum, C

Nonionic
- emulsions; kinetics of bacterial death, 193
- lotsions; preservative efficacy testing, A

Nonylphenolet; solubility; TCC, 75

Nonylphenolpolyglycol ether;
- preparation of soap; TCC, 75

N-pentacosane;
- capillary gas chromatogram of spangler sebum, C

N-tetracosane;
- capillary gas chromatogram of spangler sebum, C

N-triacontane;
- capillary gas chromatogram of spangler sebum, C

N-tricosone;
- capillary gas chromatogram of spangler sebum, C

N-tritriacontane;
- capillary gas chromatogram of spangler sebum, C

Nuclear magnetic resonance;
- nature of water absorption; stratum corneum, 151

Nutrition;
- proteins in hair; chromatography, 91

Nylon;
- zinc oxide; development of hybrid powder for body odor, B

O-acylceramide;
- maintenance of barrier lipid organization in stratum corneum, J

Occlusion;
- evaluation of hand cleansers, 33

Occlusive patch test;
- skin compatibility; evaluation of hand cleanser, 33

Octadecanoic acid;
- capillary gas chromatogram of spangler sebum, C

Octadecyl hexadecanoate;
- capillary gas chromatogram of spangler sebum, C

Octanol;
- skin penetration, 41

Octopirox;
- anti-fungal shampoo; dandruff, 109

Octyl dimethyl PABA;
- sunscreen formulation; photoprotection, 127

Octyl dodecyl myristate;
- synthesis of amide derivatives; water retention in stratum corneum, J

Octyl methoxycinnamate;
- sunscreen formulation; photoprotection, 127

Odor
- body; development of hybrid powder, B
- soap; TCC, 75

Oil
- coconut; sebum composition, C
<table>
<thead>
<tr>
<th>Subject</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comedogenicity; jojoba, cocoa butter, coconut butter, hydrogenated vegetable oil, sesame, avocado, mink, safflower, sunflower, and mineral, E</td>
<td>In-water cream; stability, 215</td>
</tr>
<tr>
<td>Mineral; lotion composition, 193, nonionic lotion formula, A</td>
<td>Olive; sebum composition, C</td>
</tr>
<tr>
<td>Vegetable; lotion composition, 193</td>
<td>Oiliness; hair, sebum soiling procedure, C</td>
</tr>
<tr>
<td>Oil-in-water lotion; dry leg regression studies; skin moisture, 151</td>
<td>Oleate esters; glyceryl monostearate composition; oil-in-water cream stability, 215</td>
</tr>
<tr>
<td>Oleic acid</td>
<td>Artificial sebum composition, C</td>
</tr>
<tr>
<td>Glyceryl monostearate composition; oil-in-water cream stability, 215</td>
<td>Soap composition; antimicrobial activity, G</td>
</tr>
<tr>
<td>Oleth-16; comedogenicity; skin care product formulation, E</td>
<td>Olive oil; artificial sebum composition, C</td>
</tr>
<tr>
<td>Organic; ingredients in cosmetics; comedogenicity, E</td>
<td>Oriental; hair; removal of sebum, C, surface topography, 173</td>
</tr>
<tr>
<td>Oxidant; hair-coloring process, 65</td>
<td>Oxidation; arachidonic acid; immunity, 101</td>
</tr>
<tr>
<td>Oxidation/reduction potential; inoculum preparation in preservation testing, 193</td>
<td>Penetration enhancer; azone, D</td>
</tr>
<tr>
<td>Oxybenzone; sunscreen formulation; photoprotection, 127</td>
<td>Peptides tagging of amino groups; fluorescence technique, F</td>
</tr>
<tr>
<td>Packaging; emulsion instability; oil-in-water cream, 215</td>
<td>Peptone; antimicrobial testing of soaps, G</td>
</tr>
<tr>
<td>Padimate-O; sunscreen formulation; photoprotection, 127</td>
<td>Perception dirty hair; lipids, C</td>
</tr>
<tr>
<td>Palmitic acid</td>
<td>Geometrical properties of hair surface, 173</td>
</tr>
<tr>
<td>Artificial sebum composition, C</td>
<td>Shaving closeness, 141</td>
</tr>
<tr>
<td>Glyceryl monostearate composition; oil-in-water cream stability, 215</td>
<td>Skin feel and appearance; cosmetic preparation, 151</td>
</tr>
<tr>
<td>Palm oil glyceride; lotion composition; preservative efficacy testing, 193</td>
<td>Percutaneous absorption penetration enhancer; azone, D</td>
</tr>
<tr>
<td>Pancreatic digest of casein; culture media composition; preservation testing, 193</td>
<td>Skin; in vitro release (abstract), 243</td>
</tr>
<tr>
<td>Papaic digest of soybean meal; culture media composition; preservation testing, 193</td>
<td>Solute; effect of solvents, 231</td>
</tr>
<tr>
<td>Paraffin: artificial sebum composition, C</td>
<td>Tolmetin; hair mouse skin (abstract), 243</td>
</tr>
<tr>
<td>Paraffin waxes; sebum composition; removal by surfactants in shampoo, C</td>
<td>Water; barrier function of stratum corneum, J</td>
</tr>
<tr>
<td>Parsol 1789; sunscreen formulation; photoprotection, 127</td>
<td>Water/oil; comedogenicity of cosmetic ingredients, E</td>
</tr>
<tr>
<td>Parsol MCX; sunscreen formulation; photoprotection, 127</td>
<td>Patch testing; mildness of cleansing products; human skin, H</td>
</tr>
<tr>
<td>Partition coefficient</td>
<td>Pathogenesis; dandruff; role of microflora, 109</td>
</tr>
<tr>
<td>Skin penetration; vitamin c, 119</td>
<td>PEG comedogenicity; cosmetic ingredients, E</td>
</tr>
<tr>
<td>Composition of washing bars; irritancy potential, H</td>
<td>PEG-6 methyl ether; composition of washing bars; irritancy potential, H</td>
</tr>
<tr>
<td>PEG-100 stearate; lotion composition; preservative efficacy testing, 193, A</td>
<td>Penetration comedogenic ingredients; skin care products, E</td>
</tr>
<tr>
<td>Penetration cosmetics-carrying liposomes, 51 enhancer for percutaneous absorption; azone, D</td>
<td>Lidocaine; skin, 41</td>
</tr>
<tr>
<td>Skin; in vitro release (abstract), 243 solute; effect of solvents, 231 vitamins; skin, 119</td>
<td></td>
</tr>
<tr>
<td>Penetrometer; consistency; oil-in-water cream, 215</td>
<td>Pentylresorcinol tetracapra/caprylate; comedogenicity and irritancy; skin care product ingredient, E</td>
</tr>
<tr>
<td>Peptides</td>
<td>Perception dirty hair; lipids, C</td>
</tr>
<tr>
<td>Geometrical properties of hair surface, 173</td>
<td>Shaving closeness, 141</td>
</tr>
<tr>
<td>Skin feel and appearance; cosmetic preparation, 151</td>
<td>Solute; effect of solvents, 231</td>
</tr>
<tr>
<td>Tolmetin; hair mouse skin (abstract), 243</td>
<td>Water; barrier function of stratum corneum, J</td>
</tr>
</tbody>
</table>

Purchased for the exclusive use of nofirst nolast (unknown)
From: SCC Media Library & Resource Center (library.scconline.org)
Permeants
- methylparaben, 231
- theophylline, 231

Peroxidation; membrane lipid; vitamins, 119

Perspiration; effect on dyed hair, 65

Petrolatum
- composition of washing bars; irritancy potential, H
- lotion; effects on skin, 1
- lotion composition; preservative efficacy testing, 193
- oil-in-water lotion; dry leg regression studies, 151
- synthesis of amide derivatives; water retention in stratum corneum, J

Petroleum ether; alkylation procedure; hair, 91

pH
- acid perspiration; hair color, 65
- cleanser composition; evaluation of, 33
- dansyl chloride; assessment of hair damage, F
- emulsion; synergy of preservative system components, A
- formulation; skin penetration, 41
- inoculum preparation; preservative efficacy testing, 193
- lotion; effects on skin, 1
- preparation of cosmetics-carrying liposomes, 51
- shampoo; metal salts, 65
- Tris HCl; extraction procedure for hair protein, 91

Pharmaceuticals
- chemical ingredients; comedogenicity, E
- formulations; effect of solvents on solute penetration, 231
- incorporation of liposomes, 51

Phenol
- saline solutions; synergy of preservative system components, A
- skin penetration, 41

Phenolic compounds; antioxidants; immunity, 101

Phenolic hydroxyls; dansylation of hair; damage assessment, F

Phenoxyethanol
- preservative system; lotion, 193
- synergy of preservative system components, A

Phenyalalnine; proteins of hair, 91

2-phenyl-14-benzimidazole-5-sulphonic acid; sunscreen formulation; photoprotection, 127

2-phenyl-5-methylbenzoxazole; sunscreen formulation; photoprotection, 127

Phemelanin; hair; protein content, 91

Phosphate; buffer; index of inflammation, 109

Phosphatidyl-choline; amphiphiles; lipid bilayer vesicles, 51

Phospholipid
- liposome structure, 51
- liposome/surfactant interaction; skin irritation (abstract), 243

Photoacoustic spectroscopy; measurement of water content; in vivo, 151

Photoprotection; sunscreen; long-wavelength ultraviolet radiation, 127

Photostability; dyes, 65

Physical; hair; properties, C, structure integrity and cosmetic appeal, F

Physical properties
- glyceryl monostearate; synergies of oil-in-water cream, 215
- membrane permeability; solvent contact, 231

Physicochemical properties; glyceryl monostearate; stability of oil-in-water cream, 215

Pig; skin; temperature and water effects, 1

Pigment; melanin; hair color, 65

Plasticization; desorption; skin, 1

Plate count agar; inoculum preparation in preservation testing, 193

Polarity
- liposome assembly, 51
- sebum components; removal from hair by surfactants, C
- synthetic pseudoceramide structure; effect on water retaining properties of stratum corneum, J

Polyacrylic acid resin; antimicrobial activity; nonionic o/w lotion, A

Poly-beta-hydroxybutyrate (PHB); pseudomonac cepacia; synergy of preservative system components, A

Polydimethylsiloxane; membranes; solute flux effected by aliphatic alcohols, 231

Polyethylene glycol
- comedogenicity and irritancy; skin care product ingredients, E
- solvents; effect on solute penetration in skin, 231

Polymer; surfactant interaction (abstract), 243

Polys; solvents; effect on solute penetration, 231

Polyquaternium-7; composition of washing bars; irritancy potential, H

Polyquaternium-10; shampoo composition; hair softness and roughness, I

Polyquaternium-10; shampoo composition; hair softness and roughness, I

Polysorbate 60; oil-in-water cream preparation; stability, 215

Porcine; skin; water-binding, 151

Polydimethylsiloxane sheeting; skin penetration, 41

Potassium; synthesis of amide derivatives; water retention in stratum corneum, J

Phosphatidylcholine; amphiphiles; lipid bilayer vesicles, 51
Potassium cocoate; soap composition; antimicrobial activity, G
Potassium hydroxide; soap composition; antimicrobial activity, G
Potassium soap; composition of washing bars; irritancy potential, H
Postassium tallowate; soap composition; antimicrobial activity, G
Potential enhancement factor (PEF); lidocaine penetration; skin, 41
Powder
aqueous; bacteria count, 21
hybrid; body odor, B
product technology; raw material selection (abstract), 243
TCC; deodorant in soaps, 75
Preparation
cosmetics-carrying liposomes, 51
inoculum; kinetics of bacterial death, 193
Preservative
alteration of Ia+ epidermal immune cells, 101
comedogenic potential; DMDM hydantoin and quaternium-15, 135
efficacy testing; kinetics of bacterial death, 193
soap composition; antimicrobial activity, G
synergy of system components, A
Pressure; hydrodynamic technique; flow resistance of hair, I
Product development; consumer driven (abstract), 243
Production; sebum; variation in, C
Profile; hair; surface topography, 173
Profilometer; measurement; surface morphology of hair, 173
Profilometry; study of hair surface, 173
Proline; proteins of hair, 91
1-propanol; effect on permeant flux; theophylline, 231, methyl paraben, 231
Properties
colored hair, 65
pseudoceramide; water recovery in stratum corneum, J
Propionic acid; role in body odor, B
Propylene glycol
comedogenicity and irritancy; skin care products, E
effect on permeant flux; theophylline, 231, methylparaben, 231
humectant; hair softening effect, I
lidocaine penetration; skin, 41
lotion; effects on skin, I
lotion composition; preservative efficacy testing, 193
oil-in-water cream preparation; stability, 215
oil-in-water lotions; dry leg regression studies, 151
Propylparaben
preservative system; lotion, 193
solute; effect of solvent interaction on penetration, 231
Prostaglandins; Ia+ Langerhans cell alteration, 101
Protection factors; sunscreen, 127
Proteins
alkylated; human hair, 91
human hair soil; surfactant removal, C
stratum corneum; viscoelasticity, I
tagging of amino groups; fluorescent technique, F
water content; near-infrared spectroscopy, 151
Protosol; lidocaine penetration; skin, 41
Pseudoceramides; water recovery properties; stratum corneum, J
Pseudomonas; synergy of preservative system components; survival curve slope method, A
Pseudomonas acnes; role in dandruff, 109
Pseudomonas aeruginosa
bacterial content in cosmetics, 21
kinetics of bacterial death; preservative efficacy testing, 193
synergy of preservative system components, A
Pseudomonas cepacia
bacterial content in cosmetics, 21
synergy of preservative system components; efficacy testing, A
Pseudomonas fluorescens
bacterial content in cosmetics, 21
synergy of preservative system components; efficacy testing, A
Pseudomonas ovale; dandruff, 109
Pseudomonas putida; synergy of preservative system components; efficacy testing, A
Pseudomonas stutzeri; synergy of preservative system components; efficacy testing, A
Psoriasis; scalp; pseudomonas ovale, 109
Pyrrolidone carboxylic acid sodium salt (PCA-Na); moisturizing agent; cosmetics-carrying liposomes, 51
Qualitative
hair cosmetics; measurement of frictional drag and softness, I
red-80 dye staining procedure; cationics on keratin surfaces, 205
shaving closeness; perceptual evaluation, 141
Quantitative
adsorption experiment; staining cationics on keratin, 205
analyses; moisture in skin, 151
changes in Ia+ antigenic cell membrane expression, 101
evaluation of hair set parameters (abstract), 243
extraction of hair lipids, C
flow resistance of hair, I
hair damage; fluorescence technique, F
linear regression method; culture conditions on bacterial death, 193
microflora; dandruft, 109
sensory perception; shaving closeness, 141
solvent; interaction on solute penetration, 231
syneresis test; aqueous phase in oil-in-water cream formulation, 215
TCC determination; soaps, 75
Quarternary; alkoxylated methyl glucoside; conditioning agent (abstract), 243
Quaternium-15
comedogenic potential, 135
preservative system; lotion, 193
Rabbit
ear; irritancy of skin care products, E
ear assay; comedogenic potential of preservatives, 135
Race; hair; protein analysis, 91
Radiation; ultraviolet; sunscreen protection factors, 127
Radioactivity
lidocaine analysis; skin penetration, 41
radiolabeled vitamins; skin penetration, 119
skin stripping; \(^{14}C\)-azone, D, \(^{14}C\)-cyoctol, D
Radiotracer studies; removal of cationics from keratin, 205
Rank order correlation; permeants; effect of solvents, 231
Rat
skin; solute penetration, 231
stratum corneum; effects of temperature, 1
Rate
color development; 5,6-dihydroxyindole, 65
death; bacteria during preservative efficacy testing, 193
Rayleigh ratio; liposome characterization, 51
Reagent
color stability; hair, 65
dansyl chloride; method for hair damage assessment, F
surfactant; preparation of cosmetics-carrying liposomes, 51
Receptor solution
saline with chlorobutanol; skin penetration, 231
skin penetration profile; vitamins c and e, 119
Red-80; dye-staining procedure; removal of cationic surfactants from keratin surfaces, 205
Reducing agent; hair; protein, 91
Refattening agent; wool wax alcohols; soap, 75
Reproducibility
flex wash test; irritancy of washing products, H
oil-in-water cream preparation; stability, 215
Resistance; lidocaine penetration; skin, 41
Retention; stratum corneum; cosmetics-carrying liposomes, 51
Retention hyperkeratosis; comedogenic ingredients; skin care products, E
Reverse-phase evaporation; preparation of cosmetics-carrying liposomes, 51
RH; relationship with stratum corneum, 1
Rinse
effect on flow resistance; hair, I
hair-coloring process, 65
Roughness
hair surface; fourier transform and fractal analysis, 173
human hair; hydrodynamic technique, I
intensity; shaving closeness, 141
skin surface; soap with TCC, 75
zinc oxide; cosmetics, B
Saccharides; stability; liposomes in cosmetics, 51
Safflower oil; cosmetic ingredient; comedogenicity, E
Salicylic acid; permeability; topical formulations (abstract), 243
Saline
buffered; in vivo simulation apparatus, 1
franz diffusion cells; skin penetration, 41
inoculum; kinetics of bacteria death, 193
receptor solution; skin penetration, 231
suspensions; preservative efficacy testing, A
Salts
ammonium; two-chain amphiphiles, 51
metal; melanogenesis, 65
metallic; conversion of short-chain fatty acids to quench body odor, B
Sandiness; soap; TCC, 75
Saponification; value; glyceryl monostearate, 215
Scaling
evaluation of hand cleansers, 33
irritancy; skin care products, E
microflora; role in dandruft, 109
stratum corneum; synthetic pseudoceramide application, J
Scalp; role of microflora; dandruft, 109
Scan length; roughness; surface topography of hair, 173
Scanning electron microscopy (SEM)
hair damage, F
soap; TCC, 75
surface morphology measurements; hair, 173
S-carboxymethylation (SCM); hair; protein analysis, 91
Seasonal
effect on skin, 1
sebum production, C
Sebaceous gland; secretions; effect on body odor, B
Sebum; removal from hair, C
Self-affinity; fractal objects, 173
Self-evaluation method; shaving closeness, 141
Sensory perception technique; shaving closeness, 141
Serine; amphiphiles; lipid bilayer vesicles, 51; proteins of hair, 91
Sesame oil; cosmetic ingredient; comedogenicity, E
Shampoo
adsorption; surface topography of hair, 173
anionic; removal of cationics, 205
anti-fungal; dandruff, 109
bacterial content, 21
effect on flow resistance; hair, I
coloring process, 65
hair damage; fluorescence technique, F
Shaving; closeness; perceptual evaluation, 135
Smoothness; shaving; perceptual evaluation, 141
Sniff tests; deodorant efficacy; soaps, 75
Soap
antibacterial liquid; validation of agar patch test, G
cleanser composition; evaluation of, 33
dsandiness; TCC, 75
Soap chamber test; irritancy potential of cleansing products, H
Sodium; soap with TCC; EDXA investigation, 75
Sodium alkyl sulfate; detergents; staining cationics on keratin, 205
Sodium alpha olefin C14-C16 sulfonate; surfactant in shampoo, C
Sodium bicarbonate; solution; dansylation of hair, F
Sodium borate; face cream composition; preservative efficacy testing, 193
Sodium chloride
acid perspiration; hair color, 65
culture media composition; preservation testing, 193
Soap composition; antimicrobial activity, G
sodium citrate; oil-in-water cream preparation; stability, 215
Sodium cocoate; soap composition; antimicrobial activity, G, irritancy potential, H
Sodium cocoglyceryl ether sulfonate; composition of commercial washing bars; irritancy potential, H
Sodium cocoyl isethionate; composition of commercial washing bars; irritancy potential, H
Sodium deceth-2 sulfate (SDES); surfactant; staining cationics on keratin, 205
Sodium dihydrogen phosphate; acid perspiration; hair color, 65
Sodium dodecyl sulfate liposomes, 51
stripping; cutaneous metabolism of topically applied drugs, D
structure modelling (abstract), 243
surface; TCC deposits, 75
tolerance, 33
ultra violet damage; DNA repair enzyme (abstract), 243
water recovery; application of synthetic pseudoceramide, J
Skin care products; testing of, 1
Skin substantivity; triclosan-containing liquid soap; agar patch test, G
Sleekness; hair smoothness; measurement of resistance of hair to air flow, I
Slough; irritancy; skin care product formulation, E
Smoothness; shaving; perceptual evaluation, 141
Sign test
comedogenic potential of preservatives, 135
method for skin irritation, H
Silicates; thickening agent; comedogenicity, E
Silicone; cosmetic ingredient; comedogenicity, E
Sine waves; fourier transform; hair profile, 173
Size; lipid assembly, 51
Skin
application of liposome-encapsulated cosmetics; absorption, 51
bacteriostatic activity; agar patch test, G
care products; comedogenicity and irritancy, E
compatibility; hand cleansers, 33
condition; topographical and light reflectance method (abstract), 243
conditioning agent; alkoxyethylated methyl glucoside quaternary (abstract), 243
immune reactions; role of antioxidants, 101
irritation; liposome/surfactant interactions (abstract), 243, washing bars, H
lidocaine penetration, 41
moisture; near-infrared reflectance spectroscopy, 141
penetration; in vitro release (abstract), 243, tolmetin (abstract), 243, vitamins, 119
permeation; erythromycin (abstract), 243
permeability characteristics, 231
pig; temperature and water effects, I
rat; effect of solvents on solute penetration, 231
smoothness; shaving, 141
surface; profilometric technique, 173

Purchased for the exclusive use of nofirst nolast (unknown)
From: SCC Media Library & Resource Center (library.scconline.org)
water recovery properties of pseudoceramides; stratum corneum, J

Sodium hydroxide
- skin penetration, 41
- synthesis of amide derivatives; water retention in stratum corneum, J

Sodium isethionate; soap bar composition; irritancy potential, H

Sodium laureth sulfate
- assessment of hair damage, F
- soap composition; antimicrobial testing, G

Sodium laureth 2-sulfate (SLES-2); surfactant; detergency measurement, C

Sodium lauryl sarcosinate; shampoo; water bleeding, 65

Sodium lauryl sulfate
- hair washing; cationic removal, 205
- irritant; hand cleanser evaluation, 33
- washing; hair samples, 91

Sodium laurylsulfoacetate; composition of washing bars; irritancy potential, H

Sodium metabisulfite; oil-in-water cream composition; stability, 215

Sodium octeth-1/deceth-1 sulfate (SODS-1); surfactant; detergency measurement, C

Sodium polyacrylate; composition of washing bars; irritancy potential, H

Sodium stearate; composition of washing bars; irritancy potential, H

Sodium styrene sulfonate; aqueous solution; hair with raised cuticles, 173

Sodium tallowate; soap composition; antimicrobial activity, G; irritancy potential, H

Softness; hair; hydrodynamic technique, I

Soil; removal from hair; sodium octeth-1/deceth-1 sulfate washing, C

Soiling procedure; hair; sebum removal, C

Soil/wash cycle; sebum components; sodium laureth 2-sulfate, ammonium lauryl sulfate, C, sodium octeth-1/deceth-1 sulfate, C

Solubility
- (abstract), 243
- compounds to quench short-chain fatty acid; headspace gas chromatography, B
- cosmetic ingredients; comedogenicity and irritancy, E
- detergent; removal of cationics from keratin, 205
- micelles; oily soil removal from hair, C
- permeant; theophylline, 231, methylparaben, 231
- protein; hair, 91
- pseudoceramides; water retention in stratum corneum, J
- TCC; nonphenolpolyglycol ether, 75
- water; dyes, 65, trioclocarban, G

Solubilizer; soap; TCC, 75

Solulan 16; lanolin derivative; comedogenicity, E

Solute
- liposome packing factor, 51
- penetration; effect of solvents, 231

Solution
- antibacterial; dandruff, 109
- aqueous; alpha olefin sulfonate, 205, ammonium lauryl sulfate and alkyl ether sulfate, 205, cetrimonium chloride, 205, hair rinse, 65, sodium deceth-2 sulfate, 205, 4-vinyl-N-methyl-pyridinium methyl sulfate and sodium styrene sulfonate, 173
- aqueous alcoholic; cyctol, D
- cationic; red-80 dye staining procedure, 205
- donor; skin penetration, 119
- ethanolic; microflora in dandruff, 109
- glycerol in water; moisture in skin, 151
- iso-valeric acid aqueous; headspace gas chromatography analysis, B
- preservatives; comedogenic potential, 135
- receptor; saline with chlorobutanol, 231, skin penetration, 119
- saline; synergy of preservative system components, A
- sebum in hexane; hair soiling procedure, C
- skin compatibility; hand cleansers, 33
- sodium bicarbonate; dansylation of hair, F
- sodium laureth-2 sulfate; hair damage assessment, F

Solvents
- aliphatic; hand cleanser evaluation, 33
- effect on solute penetration; rat skin, 231
- fatty acids and D&C red pigment #36; effect of cosmetic ingredients on comedogenicity and irritancy, E
- lipid; external sebum, C
- organic; preparation of cosmetics-carrying liposomes, 51
- TCC transfer rate; soap, 75

Sonication; preparation of cosmetics-carrying liposomes, 51

Soot; human hair soil; surfactant removal, C

Sorbitol
- composition of washing bars; irritancy potential, H
- lotion composition; preservative efficacy testing, 193

Spatial frequency; fourier transform; hair profile, 173

Spectral method; measurement of fractal dimensions, 173

Spectral reflectance; hair; color evaluation, 65

Spectrocolorimeter; measurement; color and spectral reflectance, 65

Spectrofluorometer; assessment of hair damage; dansyl chloride binding, F
Spectrophotometric assay; in vitro; sunscreen protection, 127

Spectrophotometric method; assessment of total lipid/sebum extraction, C

Spectroradiometer; measurement; ultraviolet radiation, 127

Spectrum; water; untreated porcine skin; desorption/weight loss, 151

Spermaceti wax; artificial sebum composition, C

Sphere; shape; amphiphilic lipid assembly, 51

Sphere spectrophotometer; near-infrared reflectance spectra; in vitro, 151

Spherical nylon; formation of hybrid powder; body odor, B

Sphingolipids; water-retaining properties in stratum corneum, J

S-polypeptides; sulfur proteins; hair, 91

Spray; hair soil; surfactant removal, C

Squalene
 artificial sebum composition; removal by surfactants in shampoo, C
 capillary gas chromatograph of spangler sebum, C
 pseudoceramide application; water retention in stratum corneum, J

Stability
 color; hair, 65
 emulsions; adsorbed macromolecules (abstract), 243
 liposomes in cosmetics, 51
 oil-in-water cream; physicochemical properties of glyceryl monostearate, 215

Staphylococcus aureus
 kinetics of bacterial death; preservative efficacy testing, 193
 synergy of preservative system components; efficacy testing, A

Staphylococcus epidermidis
 antimicrobial testing of soaps, G
 bacterial count in cosmetics, 21

Statistics of surface peaks; roughness measure; surface topography of hair, 173

Stearalkonium chloride (SAC); surfactant; staining cationics on keratin, 205

Stearamide MEA; lotion composition; preservative efficacy testing, 193

Steareth-16; comedogenicity; skin care products formulation, E

Stearic acid
 artificial sebum composition, C
 cold cream base; comedogenicity, E
 composition of washing bars; irritancy potential, H
 glyceryl monostearate composition; oil-in-water cream stability, 215
 lotion; effects on skin, 1
 lotion composition; preservative efficacy testing, 193
 synthesis of amide derivatives; water retention in stratum corneum, J

Sterilization; test organisms in aqueous samples; preservative efficacy testing, A

Sterol; cosmetic ingredient; comedogenicity, E

Storage; time; emulsion instability, 215

Stratum corneum
 absorption; liposome-encapsulated cosmetics, 51
 flex wash test; irritation, H
 human; substrate to measure sun protection factors, 127
 lidocaine penetration, 41
 moisture in skin; near-infrared reflectance spectroscopy, 151
 penetration; vitamin c, 119
 percutaneous absorption; azone, D, cyoctol, D
 permeability; effect of solvents on solute penetration, 231
 temperature and water effects, I
 water-retaining function and recovery properties; pseudoceramides, J

Streptavidin phycoerythrin red; antibodies; epidermal immunity, 101

Streptomycin sulfate; antimicrobial testing of soaps, G

Stress/strain curves; temperature and water effects on skin, I

Stripping; skin; cutaneous metabolism, D

Structure
 hair, F
 synthetic pseudoceramides; water recovery in stratum corneum, J
 washing anion; removal of cationics from keratin, 205

Style; hair; role of cuticle, F

Substrate
 hair; cleaning product formulation, C
 keratin; removal of cationics, 205
 measurement; sunscreen protection factor, 127

Sugar
 comedogenicity of cosmetic ingredients, E
 lipid bilayer vesicles; nature of, 51

Sulfonic acid; dansylation of hair, F

Sulfonyl chloride; dansyl chloride; hair damage, F

Sulfur
 human body malodors, B
 protein electrophoretic patterns, hair, 91

Sunflower oil; fatty acids; effects of cosmetic ingredients on comedogenicity and irritancy, E

Sunlight; effect on dyed hair, 65

Sun protection factor; sunscreen; measurement, 127
Sunsreen
ingredients; comedogenicity, E
protection factors; measurement, 127

Surface
carrier matrix; sunscreen photoprotection, 127
chemistry (abstract), 243
epithelial irritants; skin care products, E
growth of test organisms; preservative efficacy
testing, A
growth on agar media; kinetics of bacterial
death, 193
hair; friction factor, I
hair topography; fourier transform and fractal
analysis, 173
keratin; removal of cationic surfactants, 205
sebum; removal from hair, C
skin; evaluation of hand cleanser, 33, TCC
deposits, 75, water loss, 1

Surfactants
aqueous; hair-cleansing procedure, C
cationic; removal from keratin, 205
evaluation of mildness of cleansing
products, H
preparation of cosmetics-carrying liposomes, 51
removal of sebum; hair, C

Survival curve slope method; synergy of
preservative system components, A

Survival test; method for skin irritation, H

Suspensions; aqueous; preparation of cosmetics-
carrying liposomes, 51

Swelling; measurement; hair damage, F
Synodent bars; skin irritation; flex wash test, H

Syneresis; oil-in-water cream formulation;
aqueous phase, 215

Syncrowax ERL-C; oil-in-water cream
preparation; stability, 215

Synergy; preservative system components;
survival curve slope method, A

Synthesis; amide derivatives; water retention in
stratum corneum, J

Systemic; metabolism; topically applied drugs, D

Tactile
evaluation; shaving closeness, 141
skin; moisturizing cosmetic preparation, 151

Talc

Talcic ingredient; comedogenicity, E
headspace gas chromatography analysis for
evaluating quenching compounds on body
odor, B

Tape; transparence; sunscreen photoprotection, 127

TAT broth with neutralizers; dilution system;
bacteria content, 21
TCC; soap; sandiness, 75
TEA; nonionic lotion formula; preservative
efficacy testing, A

TEA lauryl ether sulfate; shampoo stability, 65

Technician infraanalyzer; near-infrared
reflectance spectra; in vitro, 151

Techniques
impedance microbiology; bacterial content in
cosmetics, 21
plate count; bacterial content in cosmetics, 21
liquid scintillation counting; lidocaine
penetration, 41

Temperature
cosmetic formulations; bacteria content, 21
effect on skin; in vitro, 1
franz diffusion cells; skin penetration, 41
growth; preservative efficacy test methods,
193
hair; cleaning, C
lipid bilayer vesicles; nature of, 51
storage; effect on syneresis in cream, 215
transsepidermal water loss measurement; hand
cleanser evaluation, 33
transfer rate; TCC, 75
x-ray diffraction analysis; syneresis in oil-in-
water cream, 215

Tensility; hair damage, F
Tetradecyloammonium bromide in hexane;
synthesis of amide derivative; water retention
in stratum corneum, J

Tetradecanoic acid; capillary gas chromatogram
of spangler sebum, C

Tetradecyl sulfates; removal of cationics from
keratin, 205

Tetrasodium EDTA; soap composition;
antimicrobial testing, G

Theophylline; permeants; effect of solvents on
solute penetration, 231

Thermal analysis system; DSC measurement;
oil-in-water cream, 215

Thermodynamic activity; solutes; skin
penetration, 231

Thermodynamic principles; stratum corneum;
water binding, 1

Thermometer; measurement of skin surface
temperature, 1

Thickness
abdominal skin; vitamin penetration, 119
glycerol monostearate in oil-in-water cream, 215
skin; lidocaine penetration, 41, moisture, 151
Thin-layer chromatography (TLC); component
analysis of extracted lipid, C

Thiol; dansylation of hair; damage assessment, F

Thixotropic properties; cream; recovery of gel
structure, 215

Threonine; proteins of hair, 91

Thromboxanes; Ia + langerhans cell alteration,
101
Time
aerobic plate counts; preservative efficacy testing, 193
antioxidant application; immunity, 101
hair; cleaning, C, coloring process, 65
impedimetric procedure; bacterial content in cosmetics, 21
lidocaine penetration; skin, 41
pseudoceramide application to stratum corneum; effect on water-retention, J
shaving; perceptual evaluation, 141
skin penetration profile; high performance liquid chromatography, 119, liquid scintillation counting, 119
skin-surface content; TCC, 75
sterilization; preservative efficacy test for organisms in aqueous samples, A

Tissue
skin; diffusional resistance, 41
vitamin c; skin penetration, 119
Titanium dioxide; cosmetic ingredient; comedogenicity, E
Tocopherol; vitamin; follicular irritant, E α-tocopherol; vitamin e; skin penetration, 119
Tolerance; skin; hand cleanser evaluation, 33
Tolmetin; permeation; mouse skin, 243

Topical
application of synthetic pseudoceramide; water recovery in stratum corneum, J
drugs; cutaneous metabolism, D
formulation; permeability of salicylic and benzoic acid (abstract), 243
oil-in-water cream; stability, 215
phenolic compounds; immunity, 101
sunscreen; photoprotection, 127

Topobiology (abstract), 243

Topography
evaluation of skin condition (abstract), 243
hair surface; fourier transform and fractal analysis, 173

Transdermal; drug delivery, D

Transdermal water loss (TEWL)
aceton/ether treatment to skin, J
evaluation of hand cleansers, 33
moisture in skin; in vivo, 151
pig skin; in vivo, 1
Transfer rate; TCC; soap, 75

Transmission electron microscopy (TEM); hair damage, F
Transpore tape; measurement; sunscreen protection factors, 127

Treatment
acetone/ether; water retention in stratum corneum, J
sodium dodecyl sulfate; water retention in stratum corneum, J

Tresses; hair; removal of sebum components, C
Triamcinolone; cosmetics-carrying liposomes, 51
Triamcinolone acetonide; azone; therapeutic formulation, D
3,4,4'-trichlorocarbanilide (triclocarban) composition of washing bars; irritancy potential, G
soap antimicrobial; agar patch test, G

Triclosan
composition of washing bars; irritancy potential, H
liquid soap; bacteriostatic activity on skin, G
2,4,4'-trichloro-2'-hydroxydiphenylether (triclosan); liquid hand soap; evaluation of agar patch test, G

Triethanolamine
cosmetic base; comedogenicity, E
lotion; effects on skin, 1
Triethanolammonium lauryl sulfate (TEALS); radiotracer experiments; removal of cationics from keratin, 205
Triethanolamine soap; composition of washing bars; irritancy potential, H

Triglycerides
glyceryl monostearate composition; oil-in-water cream stability, 215
sebum analysis; removal from hair by surfactants, C
Tris HCL; extraction procedure; hair protein, 91

Triton phosphate buffer; quantification of microflora; dandruff, 109

Triton X-100; aerobic plate counts; preservation testing, 193

Trypsin; treatment; skin layer resistances, 41

Trypticase soy agar; antimicrobial testing of soaps, G

Trypticase soy broth; dilution system; bacteria content, 21

Tryptic soy agar
inoculum preparation in preservation testing, 193
test organisms; synergy of preservative system components, A

Tryptic soy broth; antibiotic susceptibility testing, 193

TUKEY—A significant difference test; dry leg regression method, 151

TWEEN; dilution system; bacteria content, 21

TWEEN 60; oil-in-water cream preparation; stability, 215

TWEEN 80
growth of test organisms; preservative efficacy testing, A
inoculum preparation in preservation testing, 193
Tyrosinase; enzyme; melanogenesis, 65
Tyrosine; melanogenesis; hair coloring, 65
Ultrasonic generator; headspace gas chromatography analysis in quenching short-chain fatty acids, B
Ultraviolet damage in skin; DNA repair enzyme (abstract), 243
hair damage; fluorescence technique, F sunscreen; protection factors, 127
Unilamellar vesicles; preparation of cosmetics-carrying liposomes, 51
United Kingdom; raw material in cream formulation; stability, 215
United States; raw material in cream formulation; stability, 215
Unsaturated fatty acids; amphiphiles; lipid bilayer vesicles, 51
Urea composition of washing bars; irritancy potential, H extraction procedure; hair protein, 91
Valine; proteins of hair, 91
Van der waals forces; binding of keratin fibers to cationic detergents, 205
Vegetable oil composition of washing bars; irritancy potential, H cosmetic ingredient; comedogenicity, E cream preparation, 215 lotion composition; preservative efficacy testing, 193
Versatility; oxidative hair color, 65 Vesicles; liposome-encapsulated cosmetics, 51 4-vinyl-N-methyl-pyridinium methyl sulfate; aqueous solution; hair with raised cuticles, 173 Viscoelasticity; skin; effects of temperature and water activity, 1 Viscosity emulsion instability; oil-in-water cream, 215 lotion; preservative efficacy testing, A Visual evaluation; shaving closeness, 141 measurement of follicular keratosis; skin care products; E quantitation; hair damage, F Visual scoring system; skin compatibility; hand cleansers, 33 Vitamin; cosmetic ingredients; comedogenicity, E Vitamin c; skin penetration, 119 Vitamin e; skin penetration, 119 Volatility; short-chain fatty acids; body odor, B Vortex mixer; preparation of cosmetics-carrying liposomes, 51 Washing action; hand cleaner evaluation, 33 anionic detergent; removal of cationic surfactants, 205 mildness of cleansing products; flex wash test, H soap bars with triclocarban; agar patch test, G TCC quantity; soap, 75 Water binding; excised porcine skin, 151 bleeding; hair color, 65 cleanser composition; evaluation of, 33 effects on skin; in vitro, I flow resistance of wet hair; hydrodynamic technique, I glyceryl monostearate composition; oil-in-water cream stability, 215 hardness; preservative efficacy testing, A lotion composition; preservative efficacy testing, 193 preparation of cosmetics-carrying liposomes, 51 soap composition; antimicrobial testing, G, irritancy potential, H solubility; dyes, 65 solution; comedogenic potential of preservatives, 135 solvent; effect on solute penetration, 231 Water-retention; stratum corneum; effect of ceramides, J Wavelengths; near-infrared; evaluation of moisturizers, 151 Waviness; surface topography of hair, 173 Waving; hair, 65 Wax esters; sebum composition; removal by surfactants in shampoo, C Waxes; comedogenicity; cosmetic products, E Weathering hair; alkylated proteins, 91 hair damage; fluorescence technique, F mildness of washing products; flex wash test, H Weierstrass-Mandelbrot function; fractal model of rough surfaces, 173 Weight cosmetic ingredient; comedogenicity and irritancy, E hair substrate; sebum removal, C scales; dandruff, 109 sulfur proteins; hair, 91 Wire mesh bleed test; oil-in-water cream; syneresis, 215 Wool model keratin; sebum removal by surfactants, C staining cationics on keratin, 205 Wool wax alcohol; soap; TCC, 75
INDEXES

X-ray diffraction analysis; physicochemical properties of glyceryl monostearate; effect on oil-in-water cream stability, 215
X-ray fluorescence; soap analysis; sandiness, 75
Xylene; sunscreen ingredient; comedogenicity, E
Yeast
culture media composition; preservation testing, 193
P. ovale; dandruff, 109
testing procedure; bacterial content in cosmetics, 21
Zinc; comedogenicity; cosmetic ingredients, E
Zinc oxide
ability to quench short-chain fatty acids; body odor, B
sunscreen formulation; photoprotection, 127
Zinc stearate; metallic base; comedogenicity of skin care products, E

AUTHOR INDEX

Ackerman, C. S. see Breuer, M. M., 141
Akasaki, S. see Imokawa, G., J
Breuer, M. M. Perceptual evaluation of shaving closeness, 141
Brittain, H. see O'Laughlin, R., 215
Brown, K. Hair coloring by melanin precursors: a novel system for imparting durable yet reversible color effects, 65
Clarke, J. Selective removal of sebum components from hair by surfactants, C
Clarke, J. see Robbins, C., 205
Coenraads, P-J. see Tupker, R. A., 33
Cohen, E. see O'Laughlin, R., 215
Dabney, J. M. see Walling, P. L., 151
de Zeeuw, R. A. see Wiechers, J. W., D
Diffey, B. L. A new substrate to measure sunscreen protection factors throughout the ultraviolet spectrum, 127
Dorogi, P. L. see Hilliard, P. R., Jr., 1
Drenth, B. F. H. see Wiechers, J. W., D
Fukuchi, Y. Estimation of shampoo and rinse effects on the resistance to flow over human hair and hair softness using a newly developed hydrodynamic technique, I
Fukuda, M. see Kanda, F., B
Fulton, J. E., Jr. Comedogenicity and irritancy of commonly used ingredients in skin care products, E
Heinze, J. E. see Yackovich, F., G
Herder, R. E. see Wiechers, J. W., D
Hilliard, P. R., Jr. Investigation of temperature and water activity effects on pig skin in vitro, 1
Imokawa, G. Water-retaining function in the stratum corneum and its recovery properties by synthetic pseudoceramides, J.
Kaiserman, J. M. A rapid impedimetric procedure to determine bacterial content in cosmetic formulations, 21
Kanda, F. Development of a novel hybrid powder formulated to quench body odor, B
Kawamata, A. see Imokawa, G., J
Kermici, M. see Nappe, C., 91
Kerstholt, H. see Tupker, R. A., 33
Kligman, A. M. see Saint-Leger, D., 109
Koontz, S. W. see Strube, D. D., H
Kushla, G. P. Lidocaine penetration through human and hairless mouse skin in vitro, 41
Lee, A. C. see Tojo, K., 119
Leneveu, M.-C. A simple method to avoid sandiness and enhance deodorant efficacy of soaps containing TCC, 75
Lutes, C. M. see Orth, D. S., 193
Lutes Anderson, C. M. see Orth, D. S., A
Mayer, A. see Brown, K., 65
Mills, O. H., Jr. see Silber, P. M., 135
Milstein, S. R. see Orth, D. S., A
Moral, J. see Kaiserman, J. M., 21
Moravec, R. A. see Rheins, L. A., 101
Murahata, R. I. see Strube, D. D., H
Murotani, I. see Fukuchi, Y., I
Murphy, B. see Brown, K., 65
Nakajima, K. see Kanda, F., B
Nakata, O. see Kanda, F., B
Nappe, C. Electrophoretic analysis of alkylated proteins of human hair from various ethnic groups, 91
Nater, J. P. see Tupker, R. A., 33
Nordlund, J. J. see Rheins, L. A., 101
Nordlund, M. L. see Rheins, L. A., 101
Ohta, T. see Kanda, F., B
Okoshi, M. see Fukuchi, Y., I
O'Laughlin, R. Effects of variations in physico-chemical properties of glyceryl monostearate on the stability of an oil-in-water cream, 215
Orth, D. S. Synergy of preservative system
INDEXES

X-ray diffraction analysis; physicochemical properties of glyceryl monostearate; effect on oil-in-water cream stability, 215

X-ray fluorescence; soap analysis; sandiness, 75

Xylene; sunscreen ingredient; comedogenicity, E

Yeast
culture media composition; preservation testing, 193
P. ovale; dandruff, 109

testing procedure; bacterial content in cosmetics, 21

Zinc; comedogenicity; cosmetic ingredients, E

Zinc oxide
ability to quench short-chain fatty acids; body odor, B

sunscreen formulation; photoprotection, 127

Zinc stearate; metallic base; comedogenicity of skin care products, E

AUTHOR INDEX

| Ackerman, C. S. see Breuer, M. M., 141 |
| Akasaki, S. see Imokawa, G., J |
| Breuer, M. M. Perceptual evaluation of shaving closeness, 141 |
| Brittain, H. see O’Laughlin, R., 215 |
| Brown, K. Hair coloring by melanin precursors: a novel system for imparting durable yet reversible color effects, 65 |
| Clarke, J. Selective removal of sebum components from hair by surfactants, C |
| Clarke, J. see Robbins, C., 205 |
| Coenraads, P.-J. see Tupker, R. A., 33 |
| Cohen, E. see O’Laughlin, R., 215 |
| Dabney, J. M. see Walling, P. L., 151 |
| de Zeeuw, R. A. see Vliegers, J. W., D |
| Diffey, B. L. A new substrate to measure sunscreen protection factors throughout the ultraviolet spectrum, 127 |
| Dorogi, P. L. see Hilliard, P. R., Jr., 1 |
| Drenth, B. F. H. see Vliegers, J. W., D |
| Fukuchi, Y. Estimation of shampoo and rinse effects on the resistance to flow over human hair and hair softness using a newly developed hydrodynamic technique, I |
| Fukuda, M. see Kanda, F., B |
| Fulton, J. E., Jr. Comedogenicity and irritancy of commonly used ingredients in skin care products, E |
| Heinze, J. E. see Yackovich, F., G |
| Herder, R. E. see Vliegers, J. W., D |
| Hilliard, P. R., Jr. Investigation of temperature and water activity effects on pig skin in vitro, 1 |
| Imokawa, G. Water-retaining function in the stratum corneum and its recovery properties by synthetic pseudoceramides, J |
| Kaiserman, J. M. A rapid impedimetric procedure to determine bacterial content in cosmetic formulations, 21 |
| Kanda, F. Development of a novel hybrid powder formulated to quench body odor, B |
| Kawamata, A. see Imokawa, G., J |
| Kermici, M. see Nappe, C., 91 |
| Kerstholt, H. see Tupker, R. A., 33 |
| Kligman, A. M. see Saint-Leger, D., 109 |
| Koontz, S. W. see Strube, D. D., H |
| Kushla, G. P. Lidocaine penetration through human and hairless mouse skin in vitro, 41 |
| Lee, A. C. see Tojo, K., 119 |
| Leneveu, M.-C. A simple method to avoid sandiness and enhance deodorant efficacy of soaps containing TCC, 75 |
| Lutes, C. M. see Orth, D. S., 193 |
| Lutes Anderson, C. M. see Orth, D. S., A |
| Mayer, A. see Brown, K., 65 |
| Mills, O. H., Jr. see Silber, P. M., 135 |
| Milstein, S. R. see Orth, D. S., A |
| Morai, J. see Kaiserman, J. M., 21 |
| Moravec, R. A. see Rheins, L. A., 101 |
| Murahata, R. I. see Strube, D. D., H |
| Murotani, I. see Fukuchi, Y., I |
| Murphy, B. see Brown, K., 65 |
| Nakajima, K. see Kanda, F., B |
| Nakata, O. see Kanda, F., B |
| Nappe, C. Electrophoretic analysis of alkylated proteins of human hair from various ethnic groups, 91 |
| Nater, J. P. see Tupker, R. A., 33 |
| Nordlund, J. J. see Rheins, L. A., 101 |
| Nordlund, M. L. see Rheins, L. A., 101 |
| Ohta, T. see Kanda, F., B |
| Okoshi, M. see Fukuchi, Y., I |
| O’Laughlin, R. Effects of variations in physico-chemical properties of glyceryl monostearate on the stability of an oil-in-water cream, 215 |
| Orth, D. S. Synergy of preservative system |
components: use of the survival curve slope method to demonstrate anti-pseudomonas synergy of methyl paraben and acrylic acid homopolymer/copolymers in vitro, A

Orth, D. S. Effect of culture conditions and method of inoculum preparation on the kinetics of bacterial death during preservative efficacy testing, 193

Pinnagoda, J. see Tupker, R. A., 33

Pozzi, S. J. see Breuer, M. M., 141

Reich, C. see Robbins, C., 205

Rheins, L. A. The role of antioxidants in skin immune reactions: the use of flow cytometry to determine alterations in la-positive epidermal cells in allergic contact dermatitis, 101

Robbins, C. Dyestaining and the removal of cations from keratin: the structure and the influence of the washing anion, 205

Robbins, C. R. see Clarke, J., C

Robbins, C. R. see also Sandhu, S. S., F

Robson, J. see Diffey, B. L., 127

Sachs, C. see O’Laughlin, R., 215

Saint-Leger, D. The role of the resident microflora in the pathogenesis of dandruff, 109

Sandhu, S. S. A sensitive fluorescence technique using dansyl chloride to assess hair damage, F

Schoff, B. see Clarke, J., C

Schultz, T. see Brown, K., 65

Silber, P. M. On the comedogenic potential of quaternium-15 and DMDM hydantoin, 135

Smith, D. K. see Orth, D. S., A

Smith, D. K. see also Orth, D. S., 193

Sneath, R. L. see Breuer, M. M., 141

Stephens, T. J. see Silber, P. M., 135

Stoudemayer, see Saint-Leger, D., 109

Strauss, G. Liposomes: from theoretical model to cosmetic tool, 51

Strube, D. D. The flex wash test: a method for evaluating the mildness of personal washing products, H

Takaishi, N. see Imokawa, G., J

Theiler, R. F. see Strube, D. D., H

Timmins, P. see O’Laughlin, R., 215

Tojo, K. Skin penetration of vitamins c and e, 119

Trinkle, L. S. see Rheins, L. A., 101

Tupker, R. A. Evaluation of hand cleansers: assessment of composition, skin compatibility by transepidermal water loss measurements, and cleansing power, 33

Twist, J. N. The effect of solvents on solute penetration through fuzzy rat skin in vitro, 231

Varia, S. see O’Laughlin, R., 215

Wagner, C. A. see Yackovich, F., G

Walling, P. L. Moisture in skin by near-infrared reflectance spectroscopy, 151

Wiechers, J. W. Skin stripping as a potential method to determine in-vivo cutaneous metabolism of topically applied drugs, D

Wolf, B. A. see Kaiserman, J. M., 21

Wolfram, L. see Brown, K., 65

Yackovich, F. Validation of the agar patch test with an antibacterial liquid soap and comparison with the finger imprint method, G

Yagi, E. see Kanda, F., B

Yano, S. see Imokawa, G., J

Zatz, J. L. see Kushla, G. P., 41

Zatz, J. L. see also Twist, J. N., 231

Zielinski, M. A new approach to hair surface topography: fourier transform and fractal analysis, 173