JOURNAL OF COSMETIC SCIENCE 464 (43) U. Kalkbrenner et al., Studies on the composition of the wool cuticle, Proc. 8th IWTRC, Christchurch, NZ, I, 398–407 (1990). (44) J. D. Leeder, W. Bishop, and L. Jones, Internal lipids of wool fi bers, Textile Res. J., 53, 402–407 (1983). (45) A. Schwan and H. Zahn, Investigations of the cell membrane complexes in wool and hair, Proc. 6th IWTRC, Pretoria, 2, 29–41 (1980). (46) D. E. Rivett, Structural lipids of the wool fi ber, Wool Sci. Rev., 67, 1–25 (1991). (47) P. W. Wertz et al., Preparation of liposomes from stratum corneum lipids, J. Invest. Dermatol., 87, 582–584 (1986). (48) A. Korner, S. Petrovic, and H. Hocker, Cell membrane lipids of wool and human hair form liposomes, Textile Res. J., 65, 56–58 (1995). (49) D. E. Peters and J. H. Bradbury, The chemical composition of wool. XV. The cell membrane complex, Aust. J. Biol. Sci., 29, 43–55 (1976). (50) J. D. Leeder et al., Use of the transmission electron microscope to study dyeing and diffusion processes, Proc. 7th IWTRC, Tokyo, V, 99–108 (1985). (51) J. D. Leeder and R. C. Marshall, Readily-extracted proteins from Merino wool, Textile Res. J., 52, 245–249 (1982). (52) T. Inoue et al., Structural analysis of the cell membrane complex in the human hair cuticle using mi- crobeam X-ray diffraction, J. Cosmetic Sci., 58, 11–18 (2007). (53) G. E. Rogers, Hair follicle differentiation and regulation, Int. J. Dev. Biol., 48, 163–170 (2004). (54) D. F. G. Orwin, R. W. Thomson, and N. E. Flower, Plasma membrane differentiations of keratinising cells of the wool follicle. III. Tight junctions, J. Ultrastruct. Res. 45, 30–40 (1973). (55) L. N. Jones, T. J. Horr, and I. J. Kaplin, Formation of surface membranes in developing mammalian hair follicles, Micron, 24, 589–595 (1994). (56) R. I. Logan et al., Analysis of the intercellular and membrane lipids of wool and other animal fi bers, Textile Res. J., 59, 109–113 (1989). (57) Y. Masukawa, H. Narita, and G. Imokawa, Characterization of the lipid composition at the proximal root regions of human hair, J. Cosmet. Sci., 56, 1–16, (2005). (58) C. Robbins, Letter to the editor, J. Cosmet. Sci. (submitted). (59) J. D. Leeder, The resistant membranes of keratin fi bers, Master of Science thesis, Australian National University (1969). (60) C. Robbins, Chemical and Physical Behavior of Human Hair, 4th ed. (Springer-Verlag, Berlin, Heidelberg, New York, 2002), p. 91. (61) A. W. Weitkamp, A. Smiljanic, and S. Rothman, The free fatty acids of human hair fat, J. Am. Chem. Soc., 69, 1936–1939 (1947). (62) D. A. Shaw, Hair lipid and surfactants: Extraction of lipid by surfactants and lack of shampooing on rate of re-fatting of hair, Int. J. Cosmet. Sci., 1, 317–328 (1979). (63) J. S. Capablanca and I. C. Watt, Factors affecting the zeta potential at wool fi ber surfaces, Textile Res. J., 56, 49–55 (1986). (64) D. Hohl et al., Characterization of human loricrin, structure and function of a new class of epidermal cell envelope proteins, J. Biol. Chem., 266, 6626–6636 (1991). (65) R. L. Eckert and H. Green, Structure and evolution of the human involucrin gene, Cell, 46, 583–589 (1986). (66) K. W. Marvin et al., Cornifi n, a cross-linked envelope precursor in keratinocytes that is down- regulated by retinoids, Proc. Natl. Acad. Sci. USA, 89, 11026–11030 (1992). (67) T. Tezuka and M. Takahashi, The cystine-rich envelope protein from human epidermal stratum cor- neum cells, J. Invest. Dermatol., 88(1), 47–51 (1987). (68) P. M. Steinert and L. N. Marekov, The proteins elafi n, fi laggrin, keratin intermediate fi laments, lori- crin and small proline-rich proteins 1 and 2 are isodipeptide cross-linked components of the human epidermal cornifi ed cell envelope, J. Biol. Chem., 270, 17702–17711 (1995). (69) M. Jarnik, M. N. Simon, and A. C. Steven, Cornifi ed cell envelope assembly: A model based on electron microscopic determinations of thickness and projected density, J. Cell Sci., 111, 1051–1060 (1998). (70) P. M. Steinert, Structural-mechanical integration of keratin intermediate fi laments with cell peripheral structures in the cornifi ed epidermal keratinocytes, Biol. Bull., 194, 367–370 (1998). (71) J. H. Bradbury, J. D. Leeder, and I. C. Watt, The cell membrane complex of wool, Appl. Polymer Symp., 18, 227–236 (1971). (72) P. Alexander and C. Earland, Structure of wool fi bres: Isolation of an alpha and beta protein in wool, Nature, 166, 396 (1950).
CELL MEMBRANE COMPLEX 465 (73) L. J. Wolfram and B. Milligan, Keratose fractions from wool fi ber, Proc. 5th IWTRC, Aachen, 3, 242 (1975). (74) F. J. Wortmann, R. Greven, and H. Zahn, A method for isolating the cortex of keratin fi bers, Textile Res. J., 52, 479–481 (1982). (75) S. Naito, K. Takahashi, and K. Arai, Proc. 8th IWTRC, Christchurch, NZ, I, 276–285 (1990). (76) W. G. Bryson, private communication. (77) J. A. Swift and B. Bews, The chemistry of human hair cuticle. Part 3. The isolation and amino acid analysis of various sub-fractions of the cuticle obtained by pronase and trypsin digestion, J. Soc. Cosmet. Chem., 27, 289–300 (1976). (78) E. H. Mercer, The contribution of the resistant cell membranes to the properties of keratinized tissues, J. Soc. Cosmet. Chem., 16, 507–514 (1965). (79) R. C. Marshall and K. F. Ley, Examination of proteins from wool cuticle by two-dimensional gel elec- trophoresis, Textile Res. J., 56, 772–774 (1986). (80) J. G. Gould and R. L. Sneath Electron microscopy-image analysis: Quantifi cation of ultrastructural changes in hair fi ber cross sections as a result of cosmetic treatment, J. Soc. Cosmet. Chem., 36, 53–59 (1985). (81) S. Ruetsch and Y. K. Kamath, Change in surface chemistry of the cuticle of human hair by chemical and photochemical oxidation, IFSCC Magazine, 7, 299–307 (2004). (82) C. Robbins, Chemical and Physical Behavior of Human Hair, (Springer-Verlag, Berlin, Heidelberg, New York, 2002), pp. 116–118. (83) Y. K. Kamath and H. D. Weigmann, Fractography of human hair, J. Appl. Polym. Sci., 27, 3809–3833 (1982). (84) S. Sandhu and C. Robbins, A simple and sensitive technique based on protein loss measurements to assess surface damage to human hair, J. Soc. Cosmet. Chem., 44, 163–176 (1993). (85) T. Inoue, et al., Labile proteins accumulated in damaged hair upon permanent waving and bleaching treatments, J. Cosmet. Sci., 53, 337–344 (2002). (86) S. Ruetsch, in Chemical and Physical Behavior of Human Hair, 4th ed., C. Robbins, Ed. (Springer-Verlag, Berlin, Heidelberg, New York, 2002), pp. 409, 410. (87) T. Takahashi et al., Morphology and properties of Asian and Caucasian hair, J. Cosmet. Sci., 57, 327– 338 (2006). (88) E. Hoting and M. Zimmermann, Sunlight-induced modifi cations in bleached, permed, or dyed human hair, J. Soc. Cosmet. Chem., 48, 79–92 (1997). (89) A. Korner et al., Changes in the content of 18-methyleicosanoic acid in wool after UV-irradiation and corona treatment, Proc. 9th IWTRC, Aachen, 412–419 (1995). (90) M. Zimmermann and H. Hocker, Typical fracture appearance of broken wool fi bers after simulated sunlight irradiation, Textile Res. J., 66, 657–660 (1996). (91) D. T. Dean et al., Biochemistry and pathology of radical-mediated protein oxidation, Biochem. J., 324, 1–10 (1997). (92) M. B. Goshe, Y. H. Chen, and V. E. Anderson, Identifi cation of the sites of hydroxyl radical reaction with peptides by hydrogen/deuterium exchange: Prevalence of reactions with side chains, Biochemistry, 39, 1761–1770 (2000). (93) S. Hilterhaus-Bong and H. Zahn, Contributions to the chemistry of human hair. II. Lipid chemical aspects of permanently waved hair, Int. J. Cosmet. Sci., 11, 167–174 (1989). (94) G. Mahrle, W. Sterry, and C. E. Orfanos, “The Use of Scanning-Electron Microscopy to Assess Damage of Hair,” in Hair Research, Orfanos, Montagna, Stuttgen, Eds. (Springer-Verlag, Berlin, Heidelberg, New York, 1981), pp. 524–528. (95) J. D. Leeder and J. A. Rippon, Some observations on the dyeing of wool from aqueous formic acid, J. Soc. Dyers Colourists, 99, 64–65 (1983). (96) H. Zahn, Die fasern in der makromolckularem chemie, Lenzinger Ber., 42, 1 (1977). (97) J. D. Leeder and J. A. Rippon, Histological differentiation of wool fi bers in formic acid, J. Textile Inst., 73, 149–151 (1982). (98) S. Naito et al., Histochemical observation of CMC of hair, J. Soc. Fiber Sci. Tech. Jpn., 48, 420–426 (1992). (99) J. A. Swift, Proc. 8th Int. Hair Science Symposium of the DWI, Kiel, Germany, Sept. 9–11 1992. (100) L. Kreplak et al., Investigation of human hair cuticle structure by microdiffraction: Direct observation of cell membrane complex swelling, Biochim. Biophys. Acta, 1547(2), 268–274 (2001).
Purchased for the exclusive use of nofirst nolast (unknown) From: SCC Media Library & Resource Center (library.scconline.org)