UV PROTECTION AND EVALUATION OF EFFICACY OF SUNSCREENS 341 whereas in the United States, the SPF on the label corresponds to the measurements after the water immersion cycles (106). CONCLUSION Remedial and marketable interest in the effects of UVA radiation on skin has stimulated efforts to compute and illustrate the worth of sunscreen products in the broad spectrum. However, for appropriate protection against the UV spectrum, contemporary sunscreens should retain this effi ciency for the duration of the whole period of exposure to the sun according to labeled SPF. Consequently, it is signifi cant to doubt whether sunscreen is photostable when subjected to sunlight. Changes in labeling guidelines have made it easier for consumers to estimate the echelon of UVA safeguard provided by sunscreens. Yet, advanced research is desirable in many areas including the role of visible light, sys- temic absorption of sunscreens, and function of vitamin D and sun exposure in prevent- ing diseases. REFERENCES (1) M. A. Pathak and K. Stratton, Free radicals in human skin before and after exposure to light, Arch. Biochem. Biophys., 123, 468–476 (1968). (2) D. Mayol and A. Fourtanier, “Acute and chronic effects of UV on skin,” in Photoaging, D. S. Rigel, R. A. Weiss, H.W. Lim and J. S. Dover, Eds. (Marcel Dekker, New York, 2004), pp. 15–32. (3) G. M. Halliday, Infl ammation, gene mutation and photoimmunosuppression in respone to UVR- induced oxidative damage contributes to photocarcinogenesis, Mutat. Res., 571, 107–120 (2005). (4) P. Kullavanijaya and H. W. Lim, Photoprotection, Detroit, Michigan, J. Am. Acad. Dermatol., 52, 937–958 (2005). (5) J. Cadet and T. Douki , Oxidatively generated damage to DNA by UVA radiation in cells and human skin, J. Invest. Dermatol., 131, 1005–1007 (2011). (6) C. Kielbassa , L. Roza, and B. Epe, Wavelength dependence of oxidative DNA damage induced by UV and visible light, Carcinogenesis, 18, 811–816 (1997). (7) M. Wlaschek, I. Tantcheva-Poor, L. Naderi, W. Ma, L. A. Schneider, Z. Razi-Wolf, J. Schüller, and K. Scharffetter-Kochanek, Solar UV irradiation and dermal photoaging, J. Photochem. and Photobiol. B., 63, 41–51 (2001). (8) G. Imokawa, Recent advances in characterizing biological mechanisms underlying UV-induced wrin- kles: A pivotal role of Wbrobrast-derived elastas, Arch. Dermatol. Res., 300, S7–S20 (2008). (9) S. E. Ullrich, Mechanisms underlying UV-induced immune suppression, Mutat. Res., 571, 185–205 (2005). (10) A. V. Laethem, S. Claerhout, M. Garmyn, and P. Agostinis, The sunburn cell: Regulation of death and survival of the keratinocyte, Int. J. Biochem. Cell Biol., 37, 1547–1553 (2005). (11) G. M. Halliday, N. S. Agar, R. S. Barnetson, H. N. Ananthaswamy, and A.M. Jones, UV-A fi ngerprint mutations in human skin cancer, Photochem. Photobiol., 81, 3–8 (2005). (12) B. Berman and C. J. Cockerell, Pathobiology of actinic keratosis: Ultraviolet-dependent keratinocyte proliferation, J. Am. Acad. Dermatol., 68, S10–S19 (2012). (13) G. J. Clydesdale, G. W. Dandie, and H. K. Muller, Ultraviolet light induced injury: Immunological and Infl ammatory effects, Immunol. Cell Biol., 79, 547–568 (2001). (14) N. G. Hirst, L. G. Gordon, P. A. Scuffham, and A. C. Green, Lifetime cost-effectiveness of skin cancer prevention through promotion of daily sunscreen use, Value Health, 15, 261–268 (2012). (15) J. G. Chen, A. B. Fleischer, E. D. Smith, C. Kancler, N. D. Goldman, P. M. Williford, and S. R. Feldman, Cost of non-melanoma skin cancer treatment in the United States, Dermatol. Surg., 27, 1035–1038 (2001). (16) Y. Gilaberte and S. Gonzalez, Update on photoprotection, Actas Dermosifi liogr., 101, 659–672 (2010).
JOURNAL OF COSMETIC SCIENCE 342 (17) Y. Takema, Y. Sakaino, and G. Imokawa, Age-related changes in the mechanical properties and thick- ness of human facial skin, Br. J. Dermatol., 131, 641–648 (1994). (18) W. Hornebeck, J. M. Soleilhac, J. M. Tixier, E. Moczar, and L. Robert, Inhibition by elastase inhibitors of the FMLP induced chemotaxis of rat polymorphonuclear leukocytes, Cell Biochem. Funct., 5, 113–122 (1987). (19) G. Godeau and W. Hornebeck, Morphometric analysis of the degradation of human skin elastic fi bers by human leukocyte elastase (EC 3-4-21-37) and human skin Fibroblast elastase (EC 3-4-24), Pathol. Biol., 36, 1133–1138 (1988). (20) K. Tsukahara, S. Moriwaki, T. Fujimura, and Y. Takema, Inhibitory effect of an extract of Sanguisorba offi cinalis L. on ultraviolet- B-induced photodamage of rat skin, Biol. Pharm. Bull, 24, 998–1003 (2001). (21) E. Makrantonaki and C. C. Zouboulis, Molecular mechanisms of skin aging: State of the art, Ann. N. Y. Acad. Sci., 1119, 40–50 (2007). (22) J. Labat-Robert, A. Fourtanier, B. Boyer-Lafargur, and L. Robert, Age-dependent increase of elastase type protease activity in mouse skin: Effect of UV irradiation, J. Photochem. Photobiol. B., 57, 113–118 (2000). (23) D. E. Brash, A. Ziegler, A. S. Jonason, J. A. Simon, S. Kunala, and D. J. Leffell, Sunlight and sunburn in human skin cancer: p53, apoptosis, and tumor promotion, J. Invest. Dermatol. Symp. Proc., 1, 136–142 (1996). (24) J. M. Jessup, N. Hanna, E. Palaszynski, and M. L. Kripke, Mechanisms of depressed reactivity to dini- trochlorobenzene and ultraviolet-induced tumors during ultraviolet carcinogenesis in BALB/c mice, Cell Immunol., 38, 105–115 (1978). (25) S. E. M. Howie, M. Norval, and J. Maingay, Exposure to low dose UVB light suppresses delayed type hypersensitivity to herpes simplex virus in mice, J. Invest. Dermatol., 86, 125–128 (1986). (26) Y. Denkins, I. J. Fidler, and M. L. Kripke, Exposure of mice to UVB radiation suppresses delayed hy- persensitivity to Candida albicans, Photochem. Photobiol., 49, 615–619 (1989). (27) A. Jeevan and M. L. Kripke, Effect of a single exposure to ultraviolet radiation on Mycobacterium bovis bacillus Calmette–Guerin infection in mice, J. Immunol., 143, 2837–2843 (1989). (28) D. Tobin, M. V. Hogerlinden, and R. Toftgard, UVB-induced association of tumor necrosis factor (TNF) receptor 1 TNF receptor-associated factor-2 mediates activation of Rel proteins, Proc. Natl. Acad. Sci. U.S.A. 95, 565–569 (1998). (29) V. Shreedhar, T. Giese, V. W. Sung, and S. E. Ullrich, A cytokine cascade including prostaglandin E2, IL-4 and IL-10 is responsible for UV-induced systemic immune suppression, J. Immunol., 160, 3783– 3789 (1998). (30) Z. Klimova, J. Hojerova, and S. Pazourekova, Current problems in the use of organic UV filters to pro- tect skin from excessive sun exposure, Acta Chimica Slovaca, 6, 82–88 (2013). (31) R. Wolf, D. Wolf, P. Morganti, and V. Ruocco, Sunscreens, Clin. Dermatol., 19, 452–459 (2001). (32) E. Chatelain and B. Gabard, Photostabilization of butyl methoxydibenzoylmethane (Avobenzone) and ethylhexyl methoxycinnamate by bis-ethylhexyloxyphenol methoxyphenyl triazine (Tinosorb S), a new UV broadband fi lter, Photochem. Photobiol., 74, 401–406 (2007). (33) Zinc Oxide Sunscreens and Nanoparticles, accessed on 06/02/14, http://www.badgerbalm.com/s- 33-zinc-oxide-sunscreen-nanoparticles.aspx (34) J. Lademann, H. Weigmann, H. Schafer, G. Muller, and W. Sterry, Investigation of the stability of coated titanium microparticles used in sunscreens, Skin Pharmacol. Appl. Skin Physiol., 13, 258–264 (2000). (35) W. Stahl, U. Heinrich, O. Aust, H. Tronnier, and H. Sies, Lycopene-rich products and dietary photo- protection, Photochem. Photobiol. Sci., 5, 238–242 (2006). (36) M. A. Middelkamp-Hup, M. A. Pathak, C. Parrado, D. Goukassian, F. Rius-Diaz, M. C. Mihm, T. B. Fitzpatrick, and S. González, Oral Polypodium leucotomos extract decreases ultraviolet-induced damage of human skin, J. Am. Acad. Dermatol., 51, 910–918 (2004). (37) R. Capote, J. L. Alonso-Lebrero, F. Garcia, A. Brieva, J. P. Pivel, and S. Gonzalez, Polypodium leucotomos extract inhibits trans-urocanic acid photoisomerization and photo-decomposition, J. Photochem. Photo- biol. B, 82, 173–179 (2006). (38) S. Gonzalez, P. C. Joshi, and M. A. Pathak, Polypodium leucotomos extract as an antioxidant agent in the therapy of skin disorders, J. Invest. Dermatol., 102, 651–659 (1994). (39) S. Gonzalez, M. A. Pathak, and J. Cuevas, Topical or oral administration with an extract of Polypodium leucotomos prevents acute sunburn and psolaren-induced phototoxic reactions as well as depletion of Langerhans cells in human skin, Photodermatol. Photoimmunol. Photomed., 13, 50–60 (1997).
Purchased for the exclusive use of nofirst nolast (unknown) From: SCC Media Library & Resource Center (library.scconline.org)