FACILE SYNTHESIS OF TITANIUM PHOSPHATES 157 ACKNOWLEDGMENTS The authors thank Lanka M ineral Sands Ltd ., Sri Lanka, for providing ilmenite samples Dr. Asitha Cooray, Central Instrument Facility, University of Sri Jayewardenepura, for XRD sample analysis Prof. Masaru Shimomura, Department of Electronics and Materi- als Science, Graduate School of Integrated Science and Technology, Shizuoka University for XPS studies and University of Sri Jayewardenepura for the research grant ASP/01/ RE/SCI/2018/14. REFERENCES (1) A. Weir, P. Westerhoff, L . Fabricius , K. Hristovski, and N. von Goetz, Titanium dioxide nanoparticles in food and personal care products, Environ. Sci. Technol., 46, 2242–2250 (2012). (2) M. Auffan, M. Pedeutour, J. Rose, A. Masion, F. Ziarelli, D. Borschneck, C. Chaneac, C. Botta, P. Chaurand, J. Labille, and J.-Y. Bottero, Structural degradation at the surface of a TiO2-based nanomate- rial used in cosmetics, Environ. Sci. Technol., 44, 2689–2694 (2010). (3) G. P. Dransfi eld, Inorganic sunscreen s, Radiat. Protect. Dosim., 91, 271–273 (2000). (4) M. Picardo, M. Ottaviani, E. Camera, and A. Mastrofrancesco, Sebaceous gland lipids, Dermato-endocrinology, 1, 68–71 (2009). (5) H. J. Choi, K.-C. Park, H. Lee, T. C r ouzier, M. F. Rubner, R. E. Cohen, G. Barbastathis, and G. H. McKinleyand, Superoleophilic titania nanoparticle coatings with fast fi ngerprint decomposition and high transparency, ACS Appl. Mater. Interfaces, 9, 8354–8360 (2017). Figure 6. Perce n tage WR capacities at 57% relative humidity for (A) TP, (B) TOP, (C) PG-TiO2, and (D) Degussa P25 with 5% (w/w) urea.
JOURNAL OF COSMETIC SCIENCE 158 (6) M. Senzui, T. Tamura, K. Miura, Y. I k arashi, Y. Watanabe, and M. Fujii, Study on penetration of titanium dioxide (TiO(2)) nanoparticles into intact and damaged skin in vitro, J. Toxicol. Sci., 35, 107–113 (2010). (7) J. Wu, W. Liu, C. Xue, S. Zhou, F. L a n, L. Bi, H. Xu, X. Yang, and F. D. Zeng, Toxicity and penetration of TiO2 nanoparticles in hairless mice and porcine skin after subchronic dermal exposure, Toxicol. Lett., 191, 1–8 (2009). (8) F.-F. Cheng, T.-T. He, H.-T. Miao, J . -J. Shi, L.-P. Jiang, and J.-J. Zhu, Electron transfer mediated elec- trochemical biosensor for microRNAs detection based on metal ion functionalized titanium phosphate nanospheres at attomole level, ACS Appl. Mater. Interfaces., 7, 2979–2985 (2015). (9) M. Yada, Y. Inoue, A. Sakamoto, T. T o rikai, and T. Watari, Synthesis and controllable wettability of micro- and nanostructured titanium phosphate thin fi lms formed on titanium plates, ACS Appl. Mater. Interfaces, 6, 7695–7704 (2014). (10) G. Alberti, P. Cardini-Galli, U. Co s tantino, and E. Torracca, Crystalline insoluble salts of polybasic metals-I ion-exchange properties of crystalline titanium phosphate, J. Inorg. Nucl. Chem., 29, 571–578 (1967). (11) A. Bhaumik and S. Inagaki, Mesoporo u s titanium phosphate molecular sieves with ion-exchange capac- ity, J. Am. Chem. Soc., 123, 691–696 (2001). (12) H. Onoda, S. Fujikado, and T. Toyam a , Preparation of titanium phosphate white pigments with tita- nium sulfate and their powder properties, J. Adv. Ceram., 3, 132–136 (2014). (13) A. Bortun, E. Jaimez, R. Llavona, J . García, and J. Rodríguez, Formation of crystalline titanium(IV) phosphates from titanium(III) solutions, Mater. Res. Bull., 30, 413–420 (1995). (14) M. Maslova, D. Rusanova, V. Naydenov, O. Antzutkin, and L. G. Gerasimova, Formation of titanium phosphate composites during phosphoric acid decomposition of natural sphene, J. Solid State Chem., 181, 3357–3365 (2008). (15) K. K. Sahu, T. C. Alex, D. Mishra, an d A. Agrawal, An overview on the production of pigment grade titania from titania-rich slag, Waste Manag. Res., 24, 74–79 (2006). (16) S. Zhang and M. J. Nicol, An electroc h emical study of the reduction and dissolution of ilmenite in sulfuric acid solutions, Hydrometallurgy, 97, 146–152 (2009). (17) L. Palliyaguru, N. D. H. Arachchi, C. D. Jayaweera, and P. M. Jayaweera, Production of synthetic rutile from ilmenite via anion-exchange, Miner. Procss. Extr. Metall., 127, 169–175 (2017). (18) H. He, R. Cai, Y. Wang, G. Tao, P. Guo, H. Zuo, L. Chen, X. Liu, P. Zhao, and Q. Xia, Preparation and characterization of silk sericin/PVA blend fi lm with silver nanoparticles for potential antimicrobial ap- plication, Int. J. Biol. Macromol., 104, 457–464 (2017). (19) A. Lateef, R. Nazir, N. Jamil, S. Alam, R. Shah, M. N. Khan, and M. Saleeme, Synthesis and character- ization of zeolite based nano-composite: anenvironment friendly slow release fertilizer, Microporous Mes- oporous Mater., 232, 174–183 (2016). (20) G. Dransfi eld, P. J. Guest, P. L. Lyth, D. J. McGarvey, and T. G. Truscott, Photoactivity tests of TiO2-based inorganic sunscreens. Part 1: non-aqueous dispersions, J. Photochem. Photobiol. B Biol., 59, 147–151 (2000). (21) N. D. H. Arachchi, G. S. Peiris, M. Shimomura, and P. M. Jayaweera, Decomposition of ilmenite by ZnO/ZnS: enhanced leaching in acid solutions, Hydrometallurgy, 166, 73–79 (2016). (22) X. Wang, X. Yang, J. Cai, T. Miao, L. Li, G. Li, D. Deng, L. Jiang, and C. Wang, Novel fl ower-like titanium phosphate microstructures and their application in lead ion removal from drinking water, J. Mater. Chem. A, 2, 6718–6722 (2014). (23) H. B. Ortíz-Oliveros, R. M. Flores-Espinosa, E. Ordoñez-Regil, and S. M. Fernández-Valverde, Synthe- sis of α-Ti(HPO4)2·H2O and sorption of Eu(III), Chem. Eng. J., 236, 398–405 (2014). (24) Y. N. Wang and J. J. Bian, Effects of P2O5/TiO2 ratio on the sintering behavior and microwave dielec- tric properties of TiP2O7, Ceram. Int., 41, 4683–4687 (2015). (25) H. Onoda and T. Yamaguchi, Infl uence of ultrasonic treatment on preparation and powder properties of titanium phosphates, J. Mater. Chem., 22, 19826–19830 (2012). (26) D. Filippou and G. Hudon, Iron removal and recovery in the titanium dioxide feedstock and pigment industries, JOM, 61, 36 (2009). (27) T. Zhang, Y. Lu, and G. Luo, Effects of temperature and phosphoric acid addition on the solubility of iron phosphate dihydrate in aqueous solutions, Chin. J. Chem. Eng., 25, 211–215 (2017). (28) A . Stoch, W. Jastrzębski, A. Brożek, J. Stoch, J. Szaraniec, B. Trybalska, and G. Kmitaa, FTIR absorp- tion–refl ection study of biomimetic growth of phosphates on titanium implants, J. Mol. Struct., 555, 375–382 (2000). (29) T. S . Sysoeva, E. A. Asabina, V. I. Pet’kov, and V. S. Kurazhkovskaya, Alkali (alkaline-earth) metal, aluminum, and titanium complex orthophosphates: synthesis and characterization, Russ. J. Inorg. Chem., 54, 829–839 (2009).
Previous Page Next Page