INHIBITION OF MATRIX METALLOPROTEINASES 237 0.7 •0.6 -.0.5 o ,mo. 4 00.3 o 00.2 mO. 1 0 1 2 3 4 5 6 7 _ ,m•'M•P2::•/ ! B no UV UV AG NAME NAL BAC ESC Figure 6. The effect of various NOS inhibitors on the production of MMP-1 and MMP-2 by UV-irradiated human dermal fibroblasts. (A) Zymography of MMP-2. 1. no UV. 2. UV (30 J/cm2). 3. UV + AG (25 microM). 4. UV + NAME (50 microM). 5. UV + NAL (50 microM). 6. UV + BAC (20 microM). 7. UV + ESC (200 microg). (B) Proteins of MMP-1 and -2. AG: arninoguanidine. NAME: nitro-L-arginine methyl ester. NAL: nitro-L-arginine. BAC: baicalein. ESC: extract of Scutellaria root. *n = 4. p 0.05 vs no treatment. conclude that the production of MMP-1 and -2 by UV-irradiated HDF is regulated through the signaling pathway involving NO and can be downregulated using NOS inhibitors. ACKNOWLEDGMENTS The authors acknowledge the financial support of the Konkuk University Research Foundation made in the 2000 program year. REFERENCES (1) K. Scharffetter, M. Wlaschek, A. Hogg, K. Bolsen, A. Schothorst, G. Goerz, and G. Piewig, UVA irradiation induces collagenase in human derreal fibroblasts in vitro and in vivo, Arch. Dermatol. Res., 283, 509-511 (1991). (2) M.J. Petersen, C. Hansen, and S. Craig, Ultraviolet A irradiation stimulates collagenase production in cultured human fibroblasts, J. Invest. Dermatol., 99, 440-444 (1992).
238 JOURNAL OF COSMETIC SCIENCE (3) V. Koivukangas, M. Kallionen, H. Autio-Harmainen, and A. Oikarinen, UV irradiation induces the expression of gelatinases in human skin in vivo, Acta Derm. Venereol., 74, 279-282 (1994). (4) M. Petersen, T. Hamilton, and H.L. Li, Regulation and inhibition of collagenase expression by long-wavelength ultraviolet radiation in cultured human skin fibroblasts, Photochem. Photobiol., 62, 444•i48 (1995). (5) C. Kut, W. Hornbeck, N. Groult, G. Redziniack, G. Godeau, and B. Pellat, Influence of successive and combined ultraviolet a and b irradiation on matrix metalloelastases produced by human dermal fibroblasts in culture, Cell Biol. Int., 21, 347-352 (1997). (6) M. Wlaschek, K. Briviba, G. P. Stricklin, H. Sies, and K. Scharffetter-Kochanek, Singlet oxygen may mediate the induced synthesis of interstitial collagenase, J. Invest. Dermatol., 104, 194-198 (1995). (7) M. Kiss, M. Wlaschek, P. Brenneisen, G. Michel, C. Hommel, T. S. Lang, D. Peus, L. Kemeny, A. Dobozy, K. Scharffetter-Kochanek, et al., Alpha-melanocyte stimulating hormone induces collagenase/ matrix metalloproteinase-1 in human dermal fibroblast, BioL Chem. Hoppe-Seyler, 376, 425•i30 (1995). (8) R. P. Huang, J. X. Wu, Y. Fan, and E. D. Adamson, UV activates growth factor receptors via reactive oxygen intermediates,J. Cell. BioL, 133, 211-220 (1996). (9) K. Bender, C. Blattner, A. Knebel, M. Iordanov, P. Herrlich, and M. L. Rahmsdorf, UV-induced signal transduction, J. Photochem. Photobiol., 37, 1-17 (1997). (10) G.J. Fisher, H. S. Talwar, J. Lin, F. McPhillips, Z. Wang, X. Li, Y. Wan, S. Kang, andJ. J. Voorhees, Retinoic acid inhibits induction of c-Jun protein by ultraviolet R. radiation that occurs subsequent to activation of mitogen-activated protein kinase pathways in human skin in vivo, J. Clin. Invest., 101, 1432-1440 (1998). (! 1) Y. Hirai, K. Migita, S. Honda, Y. Ueki, S. Yamasaki, S. Urayama, M. Kamachi, A. Kawakami, H. Ida, M. Kita, T. Fukuda, K. Shibatomi, Y. Kawabe, T. Aoyagi, and K. Eguchi, Effects of nitric oxide on matrix metalloproteinase-2 production by rheumatoid synovial cells, Lid• Sci., 68, 913-920 (2001). (12) M. Yoshida, N. Sagawa, H. Itoh, S. Yura, D. Korita, K. Kakui, N. Hirota, T. Sato, A. Ito, and S. Fujii, Nitric oxide increases matrix metalloproteinase-1 production in human uterine cervical fibroblast cells, Mol. Hum. Reprod., 7, 979-985 (2001). (13) C. Rom•ro-Graillet, E. Aberdam, M. Clement, J.P. Ortonne, and R. Ballotti, Nitric oxide produced by ultraviolet-irradiated keratinocytes stimulates melanogenesis, Clin. Invest., 99, 635-642 (1997). (14) G.I. Gorodeski, Role of nitric oxide and cyclic guanosine 3,5-monophosphate in the estrogen regu- lation of cervical epithelial permeability, Endocrinology, 141, 1658-1666 (2000). (15) R. Ferrero, F. Rodriguez-Pascual, M. T. Miras-Portugal, and M. Torres, Comparative effects of several nitric oxide donors on intracellular cyclic GMP levels in bovine chromaffin cells: Correlation with nitric oxide production, Br. J. Pharmacol., 127, 779-787 (1999). (16) M. Demeule, M. Brossard, M. Page, D. Gingras, and R. Beliveau, Matrix metalloproteinase inhibition by green tea catechins, Biochim. Biophys. Acta, 1478, 51-60 (2000). (17) S. Lauwers, Y. Vander Heyden, and B. Rombaut, J. Pharmaceut. Biomed. Anal., 25, 131-142 (2001). (18) G.J. Fisher, S.C. Dart, H. S. Talwar, Z. O. Wang, J. Varani, S. Kang, and J. J. Voorhees, Molecular basis of sun-induced premature skin aging and retinoid antagonism, Nature, 379, 335-339 (1996). (19) G.J. Fisher, Z. O. Wang, S.C. Datta, J. Varani, S. Kang, and J.J. Voorhees, Pathophysiology of premature skin aging induced by ultraviolet light, N. Engl. J. Med., 337, 1419-1428 (1997). (20) G.J. Fisher, H.S. Talwar, J. Y. Lin, and J.J. Voorhees, Molecular mechanisms of photoaging in human skin in vivo and their prevention by all-retinoic acid, Photochem. Photobiol., 69, ! 54-157 (1999). (21) C. Nathan, Nitric oxide as a secretory production of mammalian cells, FASEB J., 6, 3051-3064 (1992). (22) Y. C. Chen, S.C. Shen, L. G. Chen, T.J.F. Lee, and L. L. Yang, Wogonin, baicalin and baicalein inhibition of inducible nitric oxide synthase and cyclooxygenase-2 gene expression induced by nitric oxide synthase inhibitors and lipopolysaccharide, Biochem. Pharmacol., 61, 1417-1427 (2001).
Previous Page Next Page