CHANGES DURING EVAPORATION OF EMULSION 29 (8) A. V. Rawlings, Moisturization and skin barrier function, Dermatol. Ther., 17, 43-48 (2004). (9) A. V. Rawlings, Moisturizer technology versus clinical performance, Dermatol. Ther., 17, 49-56 (2004). (10) J. W. Hadgraft, Influence of formulation on skin absorption,]. Mond. Pharm., 10, 309-320 (1967). (11) D. I. Friedman, Submicron emulsion vehicle for enhanced transdermal delivery of steroidal and non­ steroidal antiinflammatory drugs,]. Pharm. Sci., 84, 324-329 (1995). (12) F. Nielloud, Formulation of oil-in-water submicron emulsions in the dermatological field using experimental design, Polym. Int., 52, 27-32 (2003). (13) 0. Sonneville-Aubrun, Nanoemulsions: A new vehicle for skin care products, Adv. Colloid Interface Sci., 81, 145-149 (2004). (14) I. Aranberri, Retardation of oil drop evaporation from oil in water emulsions, Chem. Comm., 2538-2539 (2003). (15) I. Aranberri, Evaporation rates of water from concentrated oil in water emulsions, Langmuir, 20, 2069-207 4 (2004). (16) S. E. Friberg, Fragrance compounds and amphiphilic association structures, Adv. Colloid Interface Sci., 75, 181-214 (1998). (17) 0. D. H. Santos, M. F. P. Camargo, F. F. Andrade, and P.A. Rocha-Filho, Study of liquid crystalline phase changes during evaporation in vegetable oil emulsion, J. Dispers. Sci. Technol., 27, 997-1001 (2006). (18) S. E. Friberg, Phase changes during evaporation from a vegetable oil emulsion stabilized by a poly­ oxyethylene sorbitan oleate, Colloids Surf, 121, 1-7 (1997). (19) A. Al-Bawab, S. E. Friberg, and C. Fusco, Evaporation of a model skin lotion with beta hydroxy acids, Int.]. Cosmet. Sci., 26(5) (2004). (20) S. E. Friberg, Surfactant association structures and emulsion stability, J. Colloid Interface Sci., 55, 614-619 (1976). (21) S. E. Friberg, Amphiphilic association structures and thin films, Langmuir, 8, 8-19 (1992). (22) P. 0. Jansson, Van der Waals potential in coalescing emulsion drops with liquid crystals, Mo!. Cryst. Liq. Cryst., 34, 75-78 (1976). (23) S. E. Friberg, Weight fractions in three-phase emulsion with an La phase, Colloids Surf A: Physicochem. Eng. Aspects, 282-283, 369-376, (2006). (24) S. E. Friberg, Mesomorphous phases, a factor of importance for emulsions,]. Colloid Interface Sci., 29, 155-156 (1969). (25) K. Larsson, P. Quinn, K. Sato, and F. Tiberg, Lipids: Molecular Organization, Physical Functions and Technical Applications (Oily Press, Dundee, Scotland, 2006). APPENDIX I INNER DIMENSIONS In Figure App. I(a), r 1 = 0.455 cm and r2 = 0.195 cm. The volume of the bottom half-sphere = 2,r0.0.1953/3 = 0.0155 cm3 . To calculate the volume within the truncated pyramid, establish the extension to make the pyramid complete and calculate the volume as the volume difference between two complete pyramids. To calculate the h value for the top, relate the radius to the value of h. Available values of radius versus h (calculated from the outer bottom of the tube) are with values in cm: h = 0.29 h = 1.99 r = 0.195 r = 0.455 Hence h 0.1506. 0.290 + 6.538 r - 1.275 r = 0 h = -0.985. Its radius r The volume of the pyramid ending at h 0.29 (r 0.195): 0.1529 h +
30 JOURNAL OF COSMETIC SCIENCE Afi n/a 1.700 0.290 0.095 Figure App. l(a). h=O �2-------��---���---:--� u .c ::::I u 1 0 2 Height, cm 4 Figure App. I(b).
Previous Page Next Page