JOURNAL OF COSMETIC SCIENCE 212 CONCLUSION DNA repair is our primary endogenous defense against sunlight damage to skin, and recent advances have highlighted its complexity and limitations. The speed and effi - ciency of recognition and incision of UV-induced DNA lesions can be enhanced by the delivery of exogenous DNA repair enzymes, in a variety of forms. Clinical studies have confi rmed an improved repair of damage and skin health in as little as a few weeks or months of use. This technology is a valuable addition to our primary exogenous defense using sunscreens. REFERENCES (1) P. Bradford, A. Goldstein, D. Tamura, S. Khan, T. Ueda, J. Boyle, K. Oh, K. Imoto, H. Inuji, S. Moriwaki, S. Emmert, K. Pike, A. Raziuddin, T. Plona, J. Digiovanna, M. Tucker, and K. Kraemer, Cancer and neurologic degeneration in xeroderma pigmentosum: long term follow-up characterizes the role of DNA repair, J. Med. Genet., 48, 168–176 (2011). (2) D. Fajuyigbe, S. Lwin, B. Diffey, R. Baker, D. Tobin, R. Sarkany, and A. Young, Melanin distribution in human epidermis affords localized protection against DNA photodamage and concurs with skin cancer incidence difference in extreme phototypes, Faseb. J., 32(7), 3700–3706 (2018). (3) C. Olsen, L. Wilson, A. Green, N. Biswas, J. Loyalka, and D. Whiteman, Prevention of DNA dam- age in human skin by topical sunscreens, Photodermatol. Photoimmunol. Photomed., 33(3), 135–142 (2017). (4) I. M. Heerfordt, P. A. Philipsen, B. Ø. Larsen, and H. C. Wulf, Long-term trend in sunscreen use among beachgoers in Denmark, Acta Derm. Venereol., 97(10), 1202–1205 (2017). ( 5) S. Schneider and H. Lim, Review of environmental effects of oxybenzone and other sunscreen active ingredients, J. Am. Acad. Dermatol., 80(1), 266–271 (2019). ( 6) J. Cadet and T. Douki T, Formation of UV-induced DNA damage contributing to skin cancer develop- ment, Photochem. Photobiol. Sci., 517(12), 1816–1841 (2018). ( 7) P. Mao and J. Wyrick, Organization of DNA damage, excision repair, and mutagenesis in chromatin: a genomic perspective, DNA Repair (Amst), 81, 102645 (2019). ( 8) K. Elliott, M. Boström, S. Filges, M. Lindberg, J. Van den Eynden, A. Ståhlberg, A. Clausen, and E. Larsson, Elevated pyrimidine dimer formation at distinct genomic bases underlies promoter mutation hotspots in UV-exposed cancers, PLoS Genet., 14 (12), e1007849 (2018). (9) E. Fouquerel , R. Barnes, H. Wang, and P. Opresko, Measuring UV photoproduct repair in isolated telomeres and bulk genomic DNA, Methods Mol. Biol., 199, 295–306 (2019). (10) A. Tewari, R . Sarkany, and A. Young, UVA1 induces cyclobutane pyrimidine dimers but not 6–4 pho- toproducts in human skin in vivo, J. Invest. Dermatol., 132(2), 394–400 (2012). (11) E. Pleasanc e , R. Cheetham, P. Stephens, D. J. McBride, S. J. Humphray, C. D. Greenman, I. Varela, M.-L. Lin, G. R. Ordóñez, G. R. Bignell, K. Ye, J. Alipaz, M. J. Bauer, D. Beare, A. Butler, R. J. Carter, L. Chen, A. J. Cox, S. Edkins, P. I. Kokk, A comprehensive catalogue of somatic mutations from a human cancer genome, Nature, 463(7278), 191–196 (2010). (12) D. Brash, UV signa t ure mutations, Photochem. Photobiol., 91(1), 15–26 (2015). (13) A. Tewari, C. Lahm a nn, R. Sarkany, J. Bergemann, and A. Young, Human erythema and matrix metal- loproteinase-1 mRNA induction, in vivo, share an action spectrum which suggests common chromo- phores, Photochem. Photobiol. Sci., 11(1), 216–223 (2012). (14) M. Kripke, P. Cox, L. Alas, and D. Yarosh, Pyrimidine dimers in DNA initiate systemic immunosup- pression in UV irradiated mice, Proc. Natl. Acad. Sci. U. S. A., 89(16), 7516–7520 (1992). (15) P. Wolf, D. Yarosh , and M. Kripke, Effects of sunscrens and a DNA excision repair enzyme on ultravio- let radiation-induced infl ammation, immune suppression, and cyclobutane pyrimidine dimer formation in mice, J. Invest. Dermatol., 101(4), 523–527 (1993). (16) A. Khan, J. Traver s , and M. Kemp, Roles of UVA radiation and DNA damage responses in melanoma pathogenesis, Environ. Mol. Mutagen., 59(5), 438–460 (2018). (17) S. Premi, S. Wallis ch, C. Mano, A. Winer, A. Bacchiocchi, K. Wakamatsu, E. Bechara, R. Halaban, T. Douki, and D. Brash, Photochemistry. Chemiexcitation of melanin derivatives induces DNA photo- products long after UV exposure. Science, 347, 842–847 (2015).
IMPORTANCE OF DNA REPAIR 213 (18) M. Xia, K. Chen, X . Yao, Y. Xu, J. Yao, J. Yan, Z. Shao, and G. Wang, Mediator MED23 links pigmen- tation and DNA repair through the transcription factor MITF, Cell Rep., 20, 1794–1804 (2017). (19) D. Ferri, D. Oriol i , and E. Botta, Heterogeneity and overlaps in nucleotide excision repair disorders, Clin. Genet., 97(1), 12–24 (2020). (20) B. Bukowska and B. Karwowski, Actual state of knowledge in the fi eld of diseases related with defective nucleotide excision repair, Life Sci., 195, 6–18 (2018). (21) P. Shah, B. Zhao, L . Qiang, and Y.-Y. He, Phosphorylation of xeroderma pigmentosum group C regu- lates ultraviolet-induced DNA damage repair, Nucleic Acids Res., 46(10), 5050–5060 (2018). (22) J. Yoon, M. McArth u r, J. Park, D. Basu, M. Wakamiya, L. Prakash, and S. Prakash, Error-prone replication through UV Lesions by DNA polymerase θ protects against skin cancers, Cell, 176(6), 1295–1309 (2019). (23) M. Kusakabe, Y. Onishi, H. Tada, F. Kurihara, K. Kusao, M. Furukawa, S. I w ai, M. Yokoi, W. Sakai, and K. Sugasawa, Mechanism and regulation of DNA damage recognition in nucleotide excision repair, Genes Environ., 41, 2 (2019). (24) L. Gregersen and J. Svejstrup, The cellular response to transcription-blo c king DNA damage, Trends Biochem. Sci., 43(5), 327–341 (2018). (25) T. Strick and J. Portman, Transcription-coupled repair: from cells to sin g le molecules and back again, J. Mol. Biol., 431(20), 4093–4102 (2019). (26) E. Cambindo Botto, J. Muñoz, and M. Muñoz, Coupling between nucleotide ex c ision repair and gene expression, RNA Biol., 15(7), 845–848 (2018). (27) G. Kokic, A. Chernev, D. Tegunov, C. Dienemann, H. Urlaub, and P. Cramer, Structura l basis of TFIIH activation for nucleotide excision repair, Nat. Commun., 10, 2885 (2019). (28) S. Matsumoto, S. Cavadini, R. Bunker, R. Grand, A. Potenza, J. Rabl, J. Yamamoto, A . Schenk, D. Schübeler, S. Iwai, K. Sugasawa, H. Kurumizaka, and N. Thomas, DNA damage detection in nucleo- somes involves DNA register shifting, Nature, 571(7763), 79–84 (2019). (29) F. Kobaisi, N. Fayyad, H. Rezvani, M. Fayyad-Kazan, E. Sulpice, B. Badran, H. Fayyad-Kazan, X . Gidrol, and W. Rachidi, Signaling pathways, chemical and biological modulators of nucleotide excision repair: the faithful shield against UV genotoxicity, Oxid. Med. Cell. Long., 2019, 4654206 (2019). (30) L. de Assis, M. Moraes, and A. Castrucci, The molecular clock in the skin, its functionalit y, and how it is disrupted in cutaneous melanoma: a new pharmacological target? Cell. Mol. Life Sci., 76(19), 3801– 3826 (2019). (31) M. Drigeard Desgamier and P. Rochette, Enhancement of UVB-induced DNA damage after chronic l o w-dose UVB pre-stimulation, DNA Repair (Amst), 63, 56–62 (2018). (32) S. Miwa and R. Hoffman, Imaging DNA repair after UV irradiation damage of cancer cells in Ge l- foam® histoculture, Methods Mol. Biol., 1760, 199–203 (2018). (33) D. Paul, H. Mu, H. Zhao, O. Ouerfelli, P. Jeffrey, S. Broyde, and J. Min, Structure and mechanism of pyrimidine-pyrimidone (6-4) photoproduct recognition by the Rad4/XPC nucleotid e excision repair complex, Nucleic Acids Res., 47(12), 6015–6028 (2019). (34) M. Bustamante, C. Hernandez-Ferrer, A. Tewari, Y. Sarria, G. Harrison, E. Puigdecanet, L. Nonell, W. Kang, M. Friedländer, X. Estivill, J. González, M. Nieuwenhuijsen, and A. Youn g , Dose and time ef- fects of solar-simulated ultraviolet radiation on the in vivo human skin transcriptome, Br. J. Dermatol., (2019), doi: 10.1111/bjd.18527. (35) S. Freeman, A. Blackett, D. Monteleone, R. Setlow, B. Sutherland, and J. Sutherland, Quantitation of radiation-, chemical-, or enzyme-induced single strand breaks in nonradioactive DNA by alkaline ge l electrophoresis: application to pyrimidine dimers, Anal. Biochem., 158, 119–129 (1986). (36) H. Honigsmann, W. Brenner, A. Tannew, and B. Ortel, UV-induced unscheduled DNA synthesis in human skin: dose response, correlation with erythema, time course and split dose exposure in vivo, J. Phot o chem. Photobiol. B Biol., 1, 33–43 (1987). (37) Yarosh, D. Purifi cation and Administration of DNA Repair Enzymes. US Patent 5,077,211A, issued December 31, 1991. (38) Y. Sha, V. Vartanian, N. Owen, S. Mengden Koon, M. Calkins, C. Thompson, Z. Mi r afzaili, S. Mir, L. Goldsmith, H. He, C. Luo, S. Brown, P. Doetsch, A. Kaempf, J. Lim, A. McCullough, and R. Lloyd, Mod u lation of UVB-induced carcinogenesis by activation of alternative DNA repair pathways, Sci. Rep., 8(1), 705 (2018). (39) D. Yarosh, A. Rosenthal, and R. Moy, Six critical questions for DNA repair enzymes in skincare prod- ucts: a review in dialog, Clin. Cosmet. Invest. Dermatol., 12, 617–624 (2019). (40) M.-T. Leccia, C . Lebbe, J.-P. Claudel, M. Narda, and N. Basset-Seguin, New vision in photoprotection and photorepair. Dermatol. Ther., 9(1), 103–115 (2019).
Purchased for the exclusive use of nofirst nolast (unknown) From: SCC Media Library & Resource Center (library.scconline.org)