PROPERTIES OF ANTHOCYANIN-PIGMENTED LIPSTICK FORMULATIONS 75 photoaging, warranting subsequent in vivo investigation. The concentrations necessary to exhibit these activities were all well within physiologically relevant concentrations based on the average uses of lipsticks within the United States. These results suggest ACNs may have uses as potentially bioactive ingredients within cosmetic formulations further studies are warranted for claim substantiations. ACKNOWLEDGMENTS We would like to thank DD Williamson & Co., Inc. and Artemis International for provid- ing the dried anthocyanin extracts. REFERENCES (1) O. M. Anderson and M. Jordheim, “Basic anthocyanin chemistry and dietary sources,” in Anthocyanins in Health and Disease, 1st Ed. T. Wallace and M. M. Giusti. Eds. (CRC Press, Boca Raton, FL, 2014), pp. 13–90. (2) M. M. Giusti and R. E. Wrolstad, Acylated anthocyanins from edible sources and their applications in food systems, Biochem. Eng. J., 14, 217–225 (2003). (3) G. T. Sigurdson, P. Tang, and M. M. Giusti, Natural colorants: food colorants from natural sources, Annu. Rev. Food Sci. Technol., 8, 261–280 (2017). (4) P. Jing and M. M. Giusti, “Analysis of anthocyanins in biological samples,” in Anthocyanins in Health and Disease, 1st Ed. T. Wallace and M. M. Giusti. Eds. (CRC Press, Boca Raton, FL, 2014), pp. 115–140. (5) J. He and M. M. Giusti, Anthocyanins: natural colorants with health-promoting properties, Annu. Rev. Food Sci. Technol., 1, 163–187 (2010). (6) G. Mazza, C. D. Kay, T. Cottrell, and B. J. Holub, Absorption of anthocyanins from blueberries and serum antioxidant status in human subjects, J. Agric. Food Chem., 50, 7731–7737 (2002). (7) C. Ramirez-Tortosa, Ø. M. Andersen, L. Cabrita, P. T. Gardner, P. C. Morrice, S. G. Wood, S. J. Duthie, A. R. Collins, and G. G. Duthie, Anthocyanin-rich extract decreases indices of lipid peroxidation and DNA damage in vitamin E-depleted rats, Free Radic. Biol. Med., 31, 1033–1037 (2001). (8) P. Shih, C. Yeh, and G. Yen, Anthocyanins induce the activation of phase II enzymes through the anti- oxidant response element pathway against oxidative stress-induced apoptosis, J. Agric. Food Chem., 55, 9427–9435 (2007). (9) Y. P. Hwang, J. H. Choi, E. H. Han, H. G. Kim, J. H. Wee, K. O. Jung, K. H. Jung, K. I. Kwon, T. C. Jeong, Y. C. Chung, and H. G. Jeong, Purple sweet potato anthocyanins attenuate hepatic lipid ac- cumulation through activating adenosine monophosphate-activated protein kinase in human HepG2 cells and obese mice, Nutr. Res., 31, 896–906 (2011). (10) J. M. Gee and I. T. Johnson, Polyphenolic compounds: interactions with the gut and implications for human health, Curr. Med. Chem., 8, 1245–1255 (2001). (11) J. Montanari, M. Vera, E. Mensi, M. Morilla, and E. Romero, Nanoberries for topical delivery of anti- oxidants, J. Cosmet. Sci., 64, 469–481 (2013). (12) C. Chan, C. Lien, Y. Lai, C. Huang, and W. C. Liao, Infl uence of purple sweet potato extracts on the UV absorption properties of a cosmetic cream, J. Cosmet. Sci., 61, 333–341 (2010). (13) J. Y. Bae, S. S. Lim, S. J. Kim, J. S. Choi, J. Park, S. M. Ju, S. J. Han, I. J. Kang, and Y. H. Kang, Bog blueberry anthocyanins alleviate photoaging in ultraviolet-B irradiation-induced human dermal fi bro- blasts, Mol. Nutr. Food Res., 53, 726–738 (2009). (14) K. Tsoyi, H. B. Park, Y. M. Kim, J. I. Chung, S. C. Shin, W. S. Lee, H. G. Seo, J. H. Lee, K. C. Chang, and H. J. Kim, Anthocyanins from black soybean seed coats inhibit UVB-induced infl ammatory cylooxygenase-2 gene expression and PGE2 production through regulation of the nuclear factor-kappaB and phosphatidylinositol 3-kinase/Akt pathway, J. Agric. Food Chem., 56, 8969–8974 (2008). (15) C. K. Hsu, S. T. Chou, P. J. Huang, M. C. Mong, C.-K. Wang, Y. P. Hsueh, and J. K. Jhan, Crude ethanol extracts from grape seeds and peels exhibit anti-tyrosinase activity, J. Cosmet. Sci., 63, 225–232 (2012). (16) E. R. Gonzaga, Role of UV light in photodamage, skin aging, and skin cancer: importance of photopro- tection, Am. J. Clin. Dermatol., 10, 19–24 (2009).
JOURNAL OF COSMETIC SCIENCE 76 (17) K. Bojanowski, Hypodermal delivery of cosmetic actives for improved facial skin morphology and func- tionality, Int. J. Cosmet. Sci., 35, 562–567 (2013). (18) M. Crisan, L. David, B. Moldovan, A. Vulcu, S. Dreve, M. Perde-schrepler, C. Tatomir, A. G. Filip, P. Bolfa, M. Achim, I. Chiorean, I. Kacso, C. B. Grosan, and L. Olenic, New nanomaterials for the im- provement of psoriatic lesions, J. Mater. Chem. B, 1, 3152–3158 (2013). (19) M. J. Kim and S. Y. Choung, Mixture of polyphenols and anthocyanins from Vaccinium uliginosum L. alleviates DNCB-induced atopic dermatitis in NC/Nga mice, Evid. Based Complement. Altern. Med., 2012, 461989 (2012). (20) N. Plundrich, M. H. Grace, I. Raskin, and M. Ann Lila, Bioactive polyphenols from muscadine grape and blackcurrant stably concentrated onto protein-rich matrices for topical applications, Int. J. Cosmet. Sci., 35, 394–401 (2013). (21) A. Westfal and M. M. Giusti, Color profi les and stability of acylated and nonacylated anthocyanins as novel pigment sources in a lipstick model: a viable alternative to synthetic colorants, J. Cosmet. Sci., 68, 233–244 (2017). (22) S. Barone, I. Cohen, and M. Schlossman, Monograph Number 8: Lipstick Technology, R. Linda. Ed. (Society of Cosmetic Chemists, New York, NY, 2002), pp. 1–22. (23) M. M. Giusti and R. E. Wrolstad, “Characterization and measurement of anthocyanins by UV-visible spectroscopy,” in Handbook of Food Analytical Chemistry. (2005), pp. 19–31. (24) A. L. Waterhouse, “Determination of total phenolics,” in Polyphenolics in Current Protocols in Food Analytical Chemistry, S. King, M. Gates and L. Scalettar. Eds. (John Wiley and Sons, Inc., New York, NY, 2001). (25) R. M. Sayre, P. P. Agin, G. J. LeVee, and E. Marlowe, A comparison of in vivo and in vitro testing of sunscreening formulas, Photochem. Photobiol., 29, 559–566 (1979). (26) E. A. Dutra, D. A. G. C. Oliveira, E. R. M. Kedor-Hackmann, and M. I. R. Miritello Santoro, Deter- mination of sun protection factor (SPF) of sunscreens by ultraviolet spectrophotometry, Braz. J. Pharm. Sci., 40, 381–385 (2004). (27) D. Moyal, V. Alard, C. Bertin, F. Boyer, M. W. Brown, L. Kolbe, P. Matts, and M. Pissavini, The revised COLIPA in vitro UVA method, Int. J. Cosmet. Sci., 35, 35–40 (2013). (28) W. Brand-Williams, M. E. Cuvelier, and C. Berset, Use of a free radical method to evaluate antioxidant activity, LWT - Food Sci. Technol., 28, 25–30 (1995). (29) R. Prior, X. Wu, and K. Schaich, Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements, J. Agric. Food Chem., 53, 4290–4302 (2005). (30) J. M. Bueno, P. Sáez-Plaza, F. Ramos-Escudero, A. M. Jiménez, R. Fett, and A. G. Asuero, Analysis and antioxidant capacity of anthocyanin pigments. Part II: chemical structure, color, and intake of antho- cyanins. Crit. Rev. Anal. Chem., 42, 126–151 (2012). (31) R. L. Prior and X. Wu, Anthocyanins: structural characteristics that result in unique metabolic patterns and biological activities, Free Radic. Res., 40, 1014–1028 (2006). (32) M. M. Giusti and R. E. Wrolstad, Characterization of red radish anthocyanins, J. Food Sci., 61, 322–326 (1996). (33) C. Fredes, G. Montenegro, J. P. Zoffoli, F. Santander, and P. Robert, Comparison of the total phenolic content, total anthocyanin content and antioxidant activity of polyphenol-rich fruits grown in Chile, Cienc. Invest. Agrar., 41, 49–60 (2014). (34) A. Chisvert and A. Salvador, UV fi lters in sunscreens and other cosmetics. Tanning and whitening agents. Analytical methods: 3.1. UV fi lters in sunscreens and other cosmetics. Regulatory aspects and analytical methods. in Analysis of Cosmetic Products. (2007), pp. 83–140. (35) Q. Ge and X. Ma, Composition and antioxidant activity of anthocyanins isolated from Yunnan edible rose (An ning), Food Sci. Hum. Wellness, 2, 68–74 (2013). (36) S. Hariram Nile, D. Hwan Kim, and Y.-S. Keum, Determination of anthocyanin content and antioxi- dant capacity of different grape varieties, Ciência Téc. Vitiv., 30, 60–68 (2015). (37) E. Vamanu and S. Nita, Antioxidant capacity and the correlation with major phenolic compounds, an- thocyanin, and tocopherol content in various extracts from the wild edible Boletus edulis mushroom, Biomed. Res. Int., 2013, 313905 (2013). (38) S. Parvez, M. Kang, H. Chung, and H. Bae, Naturally occurring tyrosinase inhibitors: mechanism and applications in skin health, cosmetics and agriculture industries. Phytother. Res., 21, 805–816 (2007). (39) S.-Y. Kwak, J.-K. Yang, H.-R. Choi, K.-C. Park, Y.-B. Kim, and Y.-S. Lee, Synthesis and dual biologi- cal effects of hydroxycinnamoyl phenylalanyl/prolyl hydroxamic acid derivatives as tyrosinase inhibitor and antioxidant, Bioorg. Med. Chem. Lett., 23, 1136–1142 (2013). (40) L. J. Loretz, A. M. Api, L. M. Barraj, J. Burdick, W. E. Dressler, S. D. Gettings, H. Han Hsu, Y. H. Pan, T. A. Re, K. J. Renskers, A. Rothenstein, C. G. Scrafford, and C. Sewall, Exposure data for cosmetic products: lipstick, body lotion, and face cream, Food Chem. Toxicol., 43, 279–291 (2005).
Previous Page Next Page