HAIR SHAFT FORMATION AND MITOCHONDRIAL BIOENERGETICS 331 (1 2) P. O. Åstrand, K. Rodahl, H. A. Dahl, and S. B. Stromme, Textbook of Work Physiology: Physiological Bases of Exercises, 4th Ed. (Human Kinetics, Champaign, IL, 2003). (13) Wikipedia, 44 magnum. Available at: http://en.wikipedia.org/wiki/.44_Magnum. Updated June 30, 2018. Accessed July 29, 2018. (14 ) K. Morioka, Hair Follicle, Differentiation under the Electron Microscope—An Atlas (Springer, Tokyo, 2005). (15) M. R. Schneider, R. Schmidt-Ullrich, and R. Paus, The hair follicle as a dynamic miniorgan, Curr. Biol., 19, R132–R142 (2009). (16) D. P. Harland, “Environment of the anagen follicle,” in The Hair Fibre: Proteins, Structure and Development, J. E. Plowman, D. P. Harland, and S. Deb-Choudhury. Eds. (Springer Nature, Singapore, 2018), pp. 97–108. (17) R. Paus and G. Cotsarelis, The biology of hair follicles, N. Engl. J. Med., 341, 491–497 (1999). (18) C. Yang and G. Cotsarelis, Review of hair follicle dermal cells, J. Dermatol. Sci., 257, 2–11 (2010). (19) D. P. Harland, “Introduction to hair development,” in The Hair Fibre: Proteins, Structure and Develop- ment, J. E. Plowman, D. P. Harland, and S. Deb-Choudhury. Eds. (Springer Nature, Singapore, 2018), pp. 89–96. (20) T. C. Wikramanayake, O. Stojadinovic, and M. Tomic-Canic, Epidermal differentiation in barrier main- tenance and wound healing, Adv. Wound Care, 3, 272–280 (2014). (21) M. Lindberg and B. Forslind, “Formation and structure: an introduction to hair,” in Skin, Hair and Nails: Structure and Function, B. Forslind and M. Lindburg. Eds. 1st Ed. (CRC Press, Boca Raton, FL, 2003), pp. 251–261. (22) R. R. Driskell, C. Clavel, M. Rendl, and F. M. Watt, Hair follicle dermal papilla cells at a glance, J. Cell Sci., 124, 1179–1182 (2011). (23) R. Dawber, Hair: its structure and response to cosmetic preparations, Clin. Dermatol., 14, 105–112 (1996). (24) D. F. G. Orwin and J. L. Woods, Number changes and development potential of wool follicle cells in the early stages of fi ber differentiation, J. Ultrastruct. Res., 80, 312–322 (1982). (25) M. Ito, The innermost cell layer of the outer root sheath in anagen hair follicle: light and electron mi- croscopic study, Arch. Dermatol. Res., 279, 112–119 (1986). (26 ) D. F. G. Orwin, Cell differentiation in the lower outer root sheath of the Romney wool follicle: a com- panion cell layer, Aust. J. Biol. Sci., 24, 989–999 (1971). (27) J. A. Rothnagel and D. R. Roop, Hair follicle companion layer: reacquainting an old friend, J. Invest. Dermatol., 104, 42S–43S (1995). (28) M. C. Lenoir, B. A. Bernard, G. Pautrat, M. Darmon, and B. Shroot, Outer root sheath cells of human hair follicle are able to regenerate a fully differentiated epidermis in vitro, Dev. Biol., 130, 610–620 (1988). (29 ) D. M. Danilenko, B. D. Ring, and G. F. Pierce, Growth factors and cytokines in hair follicle develop- ment and cycling: recent insights from animal models and the potentials for clinical therapy, Mol. Med. Today, 2, 460–467 (1996). (30) L. Langbein and J. Schweizer, Keratins of the human hair follicle, Int. Rev. Cytol., 243, 1–78 (2005). (31) W. G. Smith, A rare nodose condition of the hair, Br. Med. J., 2, 291–296 (1879). (32) L. Langbein, M. A. Rogers, S. Praetzel-Wunder, D. Böckler, P. Schirmacher, and J. Schweizer, Novel type I hair keratins K39 and K40 are the last to be expressed in differentiation of the hair: completion of the human hair keratin catalogue, J. Invest. Dermatol., 127, 1532–1535 (2007). (33) E. Healy, S. C. Holmes, C. E. Belgaid, A. M. Stephenson, W. H. I. McLean, J. L. Rees, and C. S. Munro, A gene for monilethrix is closely linked to the type II keratin gene cluster at 12q13, Hum. Mol. Genet., 4, 2399–2402 (1995). (34) L. Horev, K. Djabali, J. Green, R. Sinclair, A. Martinez-Mir, A. Ingber, A. M. Christiano, and A. Zlotogorski, De novo mutations in monilethrix, Exp. Dermatol., 12, 882–885 (2003). (35) H. P. Stevens, D. P. Keisell, S. P. Bryant, D. T. Bishop, R. P. Dawber, N. K. Spurr, and I. M. Leigh, Linkage of monilethrix to the trichocyte and epithelial keratin gene cluster on 12q11-q13, J. Invest. Dermatol., 106, 795–797 (1996). (36) M. A. van Steensel, P. M. Steijlen, R. S. Bladergroen, M. Vermeer, and M. van Geel, A missense muta- tion in the type II hair keratin hHb3 is associated with monilethrix, J. Med. Genet., 42, e19 (2005). (37) H. Winter, C. Labreze, V. Chapalain, J. Surleve-Bazeille, M. Mercier, M. A. Rogers, A. Taieb, and J. Schweizer, A variable monilethrix phenotype associated with a novel mutation, glu402lys, in the helix termination motif of the type II hair keratin hHb1, J. Invest. Dermatol., 111, 169–172 (1998).
JOURNAL OF COSMETIC SCIENCE 332 (38) M. S. C. Birbeck and E. H. Mercer, The electron microscopy of the human hair follicle. Part1. Introduc- tion and the hair cortex, J. Biophys. Biochem. Cytol., 3, 203–214 (1957). (39) D. F. G. Orwin, The cytology and cytochemistry of the wool follicle, Int. Rev. Cytol., 60, 331–374 (1979). (40) L. A. Jones, D. P. Harland, B. B. Jarrold, J. E. Connolly, and M. G. Davis, The walking dead: sequen- tial nuclear and organelle destruction during hair development, Br. J. Dermatol., 178, 1341–1352 (2018). (41) J. A. Rothnagel and G. E. Rogers, Trichohyalin, and intermediate fi lament-associated protein of the hair follicle, J. Cell Biol., 102, 1419–1429 (1986). (42) G. E. Rogers, E. S. Kuczek, P. J. Mackinnon, R. B. Presland, and M. J. Fietz, “Special biochemical features of the hair follicle,” in The Biology of Wool and Hair, G. E. Rogers, P. J. Reis, K. A. Ward and R. C. Marshall. Eds. (Springer, Dordrecht, 1988), pp. 69–85. (43) Y. Tamada, H. Takama, T. Kitamura, T. Ikeya, and T. Yokochi, Expression of transglutaminase 1 in human anagen hair follicles, Acta Derm. Venereol., 75, 190–192 (1995). (44) T. I. Cheng, I. M. van Vlijmen-Willems, K. Hitomi, M. C. Pasch, P. E. J. van Erp, J. Schalkwijk, and P. L. Zeeuwen, Colocalization of cystatin M/E and its target proteases suggests a role in terminal differentiation of human hair follicle and nail, J. Invest. Dermatol., 129, 1232–1242 (2009). (45) E. Candi, R. Schmidt, and G. Melino, The cornifi ed envelope: a model of cell death in the skin, Nat. Rev. Mol. Cell Biol., 6, 328–340 (2005). (46) H. Koehn, J. E. Plowman, J. D. Morton, and J. M. Dyer, Identifi cation and quantitation of major struc- tural proteins from enriched cuticle fractions of wools of different breed, New Zeal. J. Agr. Res., 58, 463–471 (2015). (47) L. Langbein, H. Yoshida, S. Praetzel-Wunder, D. A. Parry, and J. Schweizer, The keratins of the human beard hair medulla: the riddle in the middle, J. Invest. Dermatol., 130, 55–73 (2010). (48) L. Auber, VII.—the anatomy of follicles producing wool-fi bres, with special reference to keratinization, Trans. R. Soc. Edinb., 62, 191–254 (1952). (49) B. Forslind and G. Swanbeck, Keratin formation in the hair follicle: I. An ultrastructural investigation, Exp. Cell Res., 43, 191–209 (1966). (50) R. E. Chapman and R. T. Gemmell, Stages in the formation and keratinization of the cortex of the wool fi ber, J. Ultrastruct. Res., 36, 342–354 (1971). (51) W. L. Epstein and H. I. Maibach, “Cell proliferation and movement in human hair bulbs,” in Advances in Biology of Skin, Vol. IX, Hair Growth, W. Montagna and R. L. Dobson. Eds. (Pergamon Press, Oxford and New York, 1969), pp. 83–97. (52) P. I. Hynd, A. C. Schlink, P. M. Phillips, and D. R. Scobie, Mitotic activity in the cells of the wool follicle bulb, Aust. J. Biol. Sci., 39, 329–339 (1986). (53) J. J. Lemasters, V. K. Ramshesh, G. L. Lovelace, J. Lim, G. D. Wright, D. Harland, and T. L. Dawson, Compartmentation of mitochondrial and oxidative metabolism in growing hair follicles: a ring of fi re, J. Invest. Dermatol., 137, 1434–1444 (2017). (54) L. Langbein, M. A. Rogers, S. Praetzel, N. Aoki, H. Winter, and J. Schweizer, A novel epithelial keratin, hK6irs1, is expressed differentially in all layers of the inner root sheath, including specialized Huxley cells (Flugelzellen) of the human hair follicle, J. Invest. Dermatol., 118, 789–799 (2002). (55) D. F. G. Orwin, R. W. Thomson, and N. E. Flower, Plasma membrane differentiations of keratinizing cells of the wool follicle. II. Desmosomes, J. Ultrastruct. Res., 45, 15–29 (1973). (56) J. E. Plowman, D. P. Harland, S. Ganeshan, J. L. Woods, B. van Shaijik, S. Deb-Choudhury, A. Thomas, S. Clerens, and D. R. Scobie, The proteomics of wool fi bre morphogenesis, J. Struct. Biol., 191, 341–351 (2015). (57) T. Bornschlögl, L. Bildstein, S. Thibaut, R. Santoprete, F. Fiat, G. S. Luengo, J. Doucet, B. A. Bernard, and N. Baghdadli, Keratin network modifi cations lead to the mechanical stiffening of the hair follicle fi ber, Proc. Natl. Acad. Sci. U.S.A., 113, 5940–5945 (2016). (58) M . Er Rafi k, F. Briki, M. Burghammer, and J. Doucet, In vivo formation steps of the hard α-keratin intermediate fi lament along a hair follicle: evidence for structural polymorphism, J. Struct. Biol., 154, 79–88 (2006). (59) R. D. B. Fraser, P. M. Steinert, and D. A. D. Parry, Structural changes in trichocyte keratin intermediate fi laments during keratinization, J. Struct. Biol., 142, 266–271 (2003). (60) R. D. B. Fraser and D. A. D. Parry, Intermediate fi lament structure in fully differentiated (oxidised) trichocyte keratin, J. Struct. Biol., 200, 45–53 (2017).
Previous Page Next Page