JOURNAL OF COSMETIC SCIENCE 332 (38) M. S. C. Birbeck and E. H. Mercer, The electron microscopy of the human hair follicle. Part1. Introduc- tion and the hair cortex, J. Biophys. Biochem. Cytol., 3, 203–214 (1957). (39) D. F. G. Orwin, The cytology and cytochemistry of the wool follicle, Int. Rev. Cytol., 60, 331–374 (1979). (40) L. A. Jones, D. P. Harland, B. B. Jarrold, J. E. Connolly, and M. G. Davis, The walking dead: sequen- tial nuclear and organelle destruction during hair development, Br. J. Dermatol., 178, 1341–1352 (2018). (41) J. A. Rothnagel and G. E. Rogers, Trichohyalin, and intermediate fi lament-associated protein of the hair follicle, J. Cell Biol., 102, 1419–1429 (1986). (42) G. E. Rogers, E. S. Kuczek, P. J. Mackinnon, R. B. Presland, and M. J. Fietz, “Special biochemical features of the hair follicle,” in The Biology of Wool and Hair, G. E. Rogers, P. J. Reis, K. A. Ward and R. C. Marshall. Eds. (Springer, Dordrecht, 1988), pp. 69–85. (43) Y. Tamada, H. Takama, T. Kitamura, T. Ikeya, and T. Yokochi, Expression of transglutaminase 1 in human anagen hair follicles, Acta Derm. Venereol., 75, 190–192 (1995). (44) T. I. Cheng, I. M. van Vlijmen-Willems, K. Hitomi, M. C. Pasch, P. E. J. van Erp, J. Schalkwijk, and P. L. Zeeuwen, Colocalization of cystatin M/E and its target proteases suggests a role in terminal differentiation of human hair follicle and nail, J. Invest. Dermatol., 129, 1232–1242 (2009). (45) E. Candi, R. Schmidt, and G. Melino, The cornifi ed envelope: a model of cell death in the skin, Nat. Rev. Mol. Cell Biol., 6, 328–340 (2005). (46) H. Koehn, J. E. Plowman, J. D. Morton, and J. M. Dyer, Identifi cation and quantitation of major struc- tural proteins from enriched cuticle fractions of wools of different breed, New Zeal. J. Agr. Res., 58, 463–471 (2015). (47) L. Langbein, H. Yoshida, S. Praetzel-Wunder, D. A. Parry, and J. Schweizer, The keratins of the human beard hair medulla: the riddle in the middle, J. Invest. Dermatol., 130, 55–73 (2010). (48) L. Auber, VII.—the anatomy of follicles producing wool-fi bres, with special reference to keratinization, Trans. R. Soc. Edinb., 62, 191–254 (1952). (49) B. Forslind and G. Swanbeck, Keratin formation in the hair follicle: I. An ultrastructural investigation, Exp. Cell Res., 43, 191–209 (1966). (50) R. E. Chapman and R. T. Gemmell, Stages in the formation and keratinization of the cortex of the wool fi ber, J. Ultrastruct. Res., 36, 342–354 (1971). (51) W. L. Epstein and H. I. Maibach, “Cell proliferation and movement in human hair bulbs,” in Advances in Biology of Skin, Vol. IX, Hair Growth, W. Montagna and R. L. Dobson. Eds. (Pergamon Press, Oxford and New York, 1969), pp. 83–97. (52) P. I. Hynd, A. C. Schlink, P. M. Phillips, and D. R. Scobie, Mitotic activity in the cells of the wool follicle bulb, Aust. J. Biol. Sci., 39, 329–339 (1986). (53) J. J. Lemasters, V. K. Ramshesh, G. L. Lovelace, J. Lim, G. D. Wright, D. Harland, and T. L. Dawson, Compartmentation of mitochondrial and oxidative metabolism in growing hair follicles: a ring of fi re, J. Invest. Dermatol., 137, 1434–1444 (2017). (54) L. Langbein, M. A. Rogers, S. Praetzel, N. Aoki, H. Winter, and J. Schweizer, A novel epithelial keratin, hK6irs1, is expressed differentially in all layers of the inner root sheath, including specialized Huxley cells (Flugelzellen) of the human hair follicle, J. Invest. Dermatol., 118, 789–799 (2002). (55) D. F. G. Orwin, R. W. Thomson, and N. E. Flower, Plasma membrane differentiations of keratinizing cells of the wool follicle. II. Desmosomes, J. Ultrastruct. Res., 45, 15–29 (1973). (56) J. E. Plowman, D. P. Harland, S. Ganeshan, J. L. Woods, B. van Shaijik, S. Deb-Choudhury, A. Thomas, S. Clerens, and D. R. Scobie, The proteomics of wool fi bre morphogenesis, J. Struct. Biol., 191, 341–351 (2015). (57) T. Bornschlögl, L. Bildstein, S. Thibaut, R. Santoprete, F. Fiat, G. S. Luengo, J. Doucet, B. A. Bernard, and N. Baghdadli, Keratin network modifi cations lead to the mechanical stiffening of the hair follicle fi ber, Proc. Natl. Acad. Sci. U.S.A., 113, 5940–5945 (2016). (58) M . Er Rafi k, F. Briki, M. Burghammer, and J. Doucet, In vivo formation steps of the hard α-keratin intermediate fi lament along a hair follicle: evidence for structural polymorphism, J. Struct. Biol., 154, 79–88 (2006). (59) R. D. B. Fraser, P. M. Steinert, and D. A. D. Parry, Structural changes in trichocyte keratin intermediate fi laments during keratinization, J. Struct. Biol., 142, 266–271 (2003). (60) R. D. B. Fraser and D. A. D. Parry, Intermediate fi lament structure in fully differentiated (oxidised) trichocyte keratin, J. Struct. Biol., 200, 45–53 (2017).
HAIR SHAFT FORMATION AND MITOCHONDRIAL BIOENERGETICS 333 (61) R. D. B. Fraser and D. A. D. Parry, “Structural hierarchy of trichocyte keratin intermediate fi laments,” in The Hair Fibre: Proteins, Structure and Development, J. E. Plowman, D. P. Harland, and S. Deb-Choudhury. Eds. (Springer Nature, Singapore, 2018), pp. 57–70. (62) R. D. B. Fraser and D. A. D. Parry, “Trichocyte keratin-associated proteins (KAPs),” in The Hair Fibre: Proteins, Structure and Development, J. E. Plowman, D. P. Harland, and S. Deb-Choudhury. Eds. (Springer Nature, Singapore, 2018), pp. 71–86. (63) D. P. Harland and J. E. Plowman, “Development of hair fi bres,” in The Hair Fibre: Proteins, Structure and Development, J. E. Plowman, D. P. Harland, and S. Deb-Choudhury. Eds. Springer Nature, Singapore, 2018), pp. 109–154. (64) C. Popescu and H. Höcker, Hair—the most sophisticated biological composite material, Chem. Soc. Rev., 36, 1282–1291 (2007).
Previous Page Next Page