OXIDATIVE STABILITY OF COSMETIC EMULSIONS WITH PLANT EXTRACTS 197 REFER ENCES (1) T . Mahmood and N. Akhtar, Stability of a cosmetic multiple emulsion loaded with green tea extract, Sci. World J., 2013, 153695 (2013). (2) C . Poyato, B. R. Thomsen, D. B. Hermund, D. Ansorena, I. Astiasarán, R. Jónsdóttir, H. G. Kristinsson, and C. Jacobsen, Antioxidant effect of water and acetone extracts of Fucus vesiculosus on oxidative stability of skin care emulsions, Eur. J. Lipid Sci. Technol., 119, 1600072 (2017). (3) S. S m aoui, H. B. Hlima, R. M. Jarraya, N. G. Kamoun, R. Ellouze, and M. Damak, Cosmetic emul- sion from virgin olive oil: formulation and bio-physical evaluation, Afr. J. Biotechnol., 11, 9664– 9671 (2012). (4) D. B . Hermund, S. Yee Heung, B. R. Thomsen, C. C. Akoh, and C. Jacobsen, Improving oxidative stability of skin care emulsions with antioxidant extracts from brown alga Fucus vesiculosus, J. Am. Oil Chem. Soc., 95, 1509–1520 (2018). (5) M. I . Mohamed, Optimization of chlorphenesin emulgel formulation, AAPS J., 6, 81–87 (2004). (6) N. A k htar, H. M. Khan, Gulfi shan, F. Rasool, M. Ahmad, and T. Saeed, Formulation and in vitro evaluation of a cosmetic emulsion containing apple juice extract, Asian J. Chem., 22, 7235–7242 (2010). (7) B. T a l-Figiel, The formation of stable W/O, O/W, W/O/W cosmetic emulsions in an ultrasonic fi eld, Chem. Eng. Res. Des., 85, 730–734 (2007). (8) E. D i ckinson, M. Golding, and J. W. Povey Malcolm, Creaming and fl occulation of oil-in-water emulsions containing sodium caseinate, J. Colloid Interf. Sci., 185, 515–529 (1997). (9) Y. M i yagawa and S. Adachi, Dispersion and oxidative stability of O/W emulsions and oxidation of microencapsulated oil, Biosci. Biotechnol. Biochem., 81, 625–633 (2017). (10) J. N oon, T. B. Mills, and I. T. Norton, The use of natural antioxidants to combat lipid oxidation in O/W emulsions, J. Food Eng., 281, 110006 (2020). (11) T. W araho, D. J. Mcclements, and E. A. Decker, Mechanisms of lipid oxidation in food dispersions, Trends Food Sci. Technol., 22, 3–13 (2011). (12) A. T hanonkaew, S. Wongyai, E. A. Decker, and D. J. McClements, Formation, antioxidant property and oxidative stability of cold pressed rice bran oil emulsion, J. Food Sci. Technol., 52, 6520–6528 (2015). (13) L. M a o, D. Xu, J. Yang, F. Yuan, Y. Gao, and J. Zhao, Effects of small and large molecule emulsifi ers on the characteristics of β-carotene nanoemulsions prepared by high pressure homogenization, Food Technol. Biotechnol., 47, 336–342 (2009). (14) H. T. Osborn and C. C Akoh, Effect of emulsifi er type, droplet size, and oil concentration on lipid oxidation in structured lipid-based oil-in-water emulsions, Food Chem., 84, 451–456 (2004). (15) C. Po y ato, I. Navarro-Blasco, M. Calvo, R. Cavero, I. Astiasarán, and D. Ansorena, Oxidative stability of O/W and W/O/W emulsions: effect of lipid composition and antioxidant polarity, Food Res. Int., 51, 132–140 (2013). (16) C. Ber t on, M. H. Ropers, D. Bertrand, M. Viau, and C. Genot, Oxidative stability of oil-in-water emul- sions stabilised with protein or surfactant emulsifi ers in various oxidation conditions, Food Chem., 131, 1360–1369 (2012). (17) B. Yi, H. J. Ka, and M. Kim, Effects of curcumin on the oxidative stability of oils depending on type of matrix, photosensitizers, and temperature, J. Am. Oil Chem. Soc., 92, 685–691 (2015). (18) N. C. S hantha and E. A. Decker, Rapid, sensitive, iron-based spectrophotometric methods for determi- nation of peroxide values of food lipids, J. AOAC Int., 77, 421–424 (1994). (19) A. Cen g iz, T. Kahyaoglu, K. Schröen, and C. Berton-Carabin, Oxidative stability of emulsions fortifi ed with iron: the role of liposomal phospholipids, J. Sci. Food Agric., 99, 2957–2965 (2019). (20) D. J. M c Clements and E. A. Decker, Lipid oxidation in oil-in-water emulsions: impact of molecular environment on chemical reactions in heterogeneous food systems, J. Food Sci., 65, 1270–1282 (2000). (21) E. M. Balb o a, M. L. Soto, D. R. Nogueira, N. González-López, E. Conde, A. Moure, M. P. Vinardell, M. Mitjans, and H. Domínguez, Potential of antioxidant extracts produced by aqueous processing of renewable resources for the formulation of cosmetics, Ind. Crop Prod., 58, 104–110 (2014). (22) S. Drusch, Y. Serfert, A. Van Den Heuvel, and K. Schwarz, Physicochemical characterization and oxida- tive stability of fi sh oil encapsulated in an amorphous matrix containing trehalose, Food Res. Int., 39, 807–815 (2006). (23) M. T. Satué-G r acia, E. N. Frankel, N. Rangavajhyala, and J. B. German, Lactoferrin in infant formulas: effect on oxidation, J. Agric. Food Chem., 48, 4984–4990 (2000).
JOURNAL OF COSMETIC SCIENCE 198 (24) R. Khanum and H . Thevanayagam, Lipid peroxidation: its effects on the formulation and use of phar- maceutical emulsions, Asian J. Pharm. Sci., 12, 401–411 (2017). (25) L. Cui, H. T. C ho, D. J. McClements, E. A. Decker, and Y. Park, Effects of salts on oxidative stability of lipids in Tween-20 stabilized oil-in-water emulsions, Food Chem., 197, 1130–1135 (2016). (26) A. Cengiz, K. S chroën, and C. Berton-Carabin, Lipid oxidation in emulsions fortifi ed with iron-loaded alginate beads, Foods, 8, 361 (2019). (27) J. M. Yun and J . Surh, Fatty acid composition as a predictor for the oxidation stability of Korean vegetable oils with or without induced oxidative stress, Prev Nutr. Food Sci., 17, 158–165 (2012). (28) J. M. Gutteridg e and B. Halliwell, Antioxidants: molecules, medicines, and myths. Biochem. Biophys. Res. Commun., 393, 561–564 (2010). (29) M. G. Gallego, M . Skowyra, M. H. Gordon, N. A. Azman, and M. P. Almajano, Effect of leaves of Caesalpinia decapetala on oxidative stability of oil-in-water emulsions, Antioxidants, 6, 19 (2017). (30) D. J. McClement s , Emulsion design to improve the delivery of functional lipophilic components, Annu. Rev. Food Sci. Technol., 1, 241–269 (2010). (31) E. Balboa, E. C o nde, A. Constenla, E. Falqué, and H. Domínguez, Sensory evaluation and oxidative stability of a suncream formulated with thermal spring waters from ourense (NW Spain) and Sargassum muticum extracts, Cosmetics, 4, 19 (2017). (32) Q. D. Do, A. E. A n gkawijaya, P. L. Tran-Nguyen, L. H. Huynh, F. E. Soetaredjo, S. Ismadji, and Y. H. Ju, Effect of extraction solvent on total phenol content, total fl avonoid content, and antioxidant activity of Limnophila aromatic, J. Food Drug Anal., 22, 296–302 (2014). (33) E. M. Balboa, A. M oure, and H. Domínguez, Valorization of Sargassum muticum biomass according to the biorefi nery concept, Mar. Drugs, 13, 3745–3760 (2015). (34) H. Dominguez and E . P. Loret, Ulva lactuca, A source of troubles and potential riches, Mar. Drugs, 17, 357 (2019). (35) S. Kraan, “Pigment s and minor compounds in algae,” in Functional Ingredients from Algae for Foods and Nutraceuticals, H. Domínguez. Ed. (Woodhead Publishing, Cambridge, United Kingdom, 2013), pp. 205–251. (36) M. T. Cesário, M. M. R. da F onseca, M. M. Marques, and M. C. M. D. de Almeida, Marine algal carbo- hydrates as carbon sources for the production of biochemicals and biomaterials, Biotechnol. Adv., 36, 798–817 (2018). (37) M. Kazir, Y. Abuhassira, A. R obin, O. Nahor, J. Luo, A. Israel, A. Golberg, and Y. D. Livney, Extraction of proteins from two marine macroalgae, Ulva sp. and Gracilaria sp. for food application, and evaluat- ing digestibility, amino acid composition and antioxidant properties of the protein concentrates, Food Hydrocoll., 87, 194–203 (2019). (38) D. B. Hermund, B. Yesiltas, P . Honold, R. Jónsdóttir, H. G. Kristinsson, and C. Jacobsen. Characterisa- tion andantioxidant evaluation of Icelandic F. vesiculosus extracts in vitroand infi sh-oil-enriched milk and mayonnaise, J. Func. Foods, 19, 828–841 (2015). (39) P. J. Honold, C. Jacobsen, R. J ònsdòttir, H. G. Kristinsson, and D. B. Hermund, Potential seaweed- based food ingredients to inhibit lipid oxidation infi sh-oil-enriched mayonnaise, Eur. Food Res. Technol., 242, 571–584 (2016). (40) A. Karadag, D. B. Hermund, L. H. S. Jensen, U. Andersen, R. Jónsdóttir, H. G. Kristinsson, C. Alasalvar, and C. Jacobsen, Oxidative stability and microstructure of 5% fi sh-oil-enriched granola bars added natural antioxidants derived from brown alga Fucus vesiculosus, Eur. J. Lipid Sci. Technol., 119, 1500578 (2017). (41) S. L. Holdt and S. Kraan, Bioactiv e compounds in seaweed: functional food applications and legislation, J. Appl. Phycol., 23, 543–597 (2011). (42) K. H. S. Farvin and C. Jacobsen, P h enolic compounds andin vitro antioxidant activities of selected spe- cies of seaweed from Danish coast, Food Chem., 138, 1670–1681 (2013). (43) I. F. Almeida, P. C. Costa, and M. F. Bahia, Evaluation of functional stability and batch-to-batch repro- ducibility of a Castanea sativa leaf extract with antioxidant activity, AAPS PharmSciTech, 11, 120–125 (2010). (44) Y. S. Choi, J. H. Choi, D. J. Han, H. Y. Kim, M. A. Lee, H. Kim, D. H. Song, J. W. Lee, and C. J. Kim, Effects of chestnut (Castanea sativa mill.) peel powder on quality characteristics of chicken emulsion sausages, Korean J Food Sci. Anim. Resour., 30, 755–763 (2010). (45) H. X. Wang and T. B. Ng, Purifi cat i on of castamollin, a novel antifungal protein from Chinese chestnuts, Protein Expr. Purif., 32, 44–52 (2003). (46) A. Prakash and R. Baskaran, Acerol a , an untapped functional superfruit: a review on latest frontiers, J. Food Sci. Technol., 55, 3373–3384 (2018).
Previous Page Next Page