JOURNAL OF COSMETIC SCIENCE 198 (24) R. Khanum and H . Thevanayagam, Lipid peroxidation: its effects on the formulation and use of phar- maceutical emulsions, Asian J. Pharm. Sci., 12, 401–411 (2017). (25) L. Cui, H. T. C ho, D. J. McClements, E. A. Decker, and Y. Park, Effects of salts on oxidative stability of lipids in Tween-20 stabilized oil-in-water emulsions, Food Chem., 197, 1130–1135 (2016). (26) A. Cengiz, K. S chroën, and C. Berton-Carabin, Lipid oxidation in emulsions fortifi ed with iron-loaded alginate beads, Foods, 8, 361 (2019). (27) J. M. Yun and J . Surh, Fatty acid composition as a predictor for the oxidation stability of Korean vegetable oils with or without induced oxidative stress, Prev Nutr. Food Sci., 17, 158–165 (2012). (28) J. M. Gutteridg e and B. Halliwell, Antioxidants: molecules, medicines, and myths. Biochem. Biophys. Res. Commun., 393, 561–564 (2010). (29) M. G. Gallego, M . Skowyra, M. H. Gordon, N. A. Azman, and M. P. Almajano, Effect of leaves of Caesalpinia decapetala on oxidative stability of oil-in-water emulsions, Antioxidants, 6, 19 (2017). (30) D. J. McClement s , Emulsion design to improve the delivery of functional lipophilic components, Annu. Rev. Food Sci. Technol., 1, 241–269 (2010). (31) E. Balboa, E. C o nde, A. Constenla, E. Falqué, and H. Domínguez, Sensory evaluation and oxidative stability of a suncream formulated with thermal spring waters from ourense (NW Spain) and Sargassum muticum extracts, Cosmetics, 4, 19 (2017). (32) Q. D. Do, A. E. A n gkawijaya, P. L. Tran-Nguyen, L. H. Huynh, F. E. Soetaredjo, S. Ismadji, and Y. H. Ju, Effect of extraction solvent on total phenol content, total fl avonoid content, and antioxidant activity of Limnophila aromatic, J. Food Drug Anal., 22, 296–302 (2014). (33) E. M. Balboa, A. M oure, and H. Domínguez, Valorization of Sargassum muticum biomass according to the biorefi nery concept, Mar. Drugs, 13, 3745–3760 (2015). (34) H. Dominguez and E . P. Loret, Ulva lactuca, A source of troubles and potential riches, Mar. Drugs, 17, 357 (2019). (35) S. Kraan, “Pigment s and minor compounds in algae,” in Functional Ingredients from Algae for Foods and Nutraceuticals, H. Domínguez. Ed. (Woodhead Publishing, Cambridge, United Kingdom, 2013), pp. 205–251. (36) M. T. Cesário, M. M. R. da F onseca, M. M. Marques, and M. C. M. D. de Almeida, Marine algal carbo- hydrates as carbon sources for the production of biochemicals and biomaterials, Biotechnol. Adv., 36, 798–817 (2018). (37) M. Kazir, Y. Abuhassira, A. R obin, O. Nahor, J. Luo, A. Israel, A. Golberg, and Y. D. Livney, Extraction of proteins from two marine macroalgae, Ulva sp. and Gracilaria sp. for food application, and evaluat- ing digestibility, amino acid composition and antioxidant properties of the protein concentrates, Food Hydrocoll., 87, 194–203 (2019). (38) D. B. Hermund, B. Yesiltas, P . Honold, R. Jónsdóttir, H. G. Kristinsson, and C. Jacobsen. Characterisa- tion andantioxidant evaluation of Icelandic F. vesiculosus extracts in vitroand infi sh-oil-enriched milk and mayonnaise, J. Func. Foods, 19, 828–841 (2015). (39) P. J. Honold, C. Jacobsen, R. J ònsdòttir, H. G. Kristinsson, and D. B. Hermund, Potential seaweed- based food ingredients to inhibit lipid oxidation infi sh-oil-enriched mayonnaise, Eur. Food Res. Technol., 242, 571–584 (2016). (40) A. Karadag, D. B. Hermund, L. H. S. Jensen, U. Andersen, R. Jónsdóttir, H. G. Kristinsson, C. Alasalvar, and C. Jacobsen, Oxidative stability and microstructure of 5% fi sh-oil-enriched granola bars added natural antioxidants derived from brown alga Fucus vesiculosus, Eur. J. Lipid Sci. Technol., 119, 1500578 (2017). (41) S. L. Holdt and S. Kraan, Bioactiv e compounds in seaweed: functional food applications and legislation, J. Appl. Phycol., 23, 543–597 (2011). (42) K. H. S. Farvin and C. Jacobsen, P h enolic compounds andin vitro antioxidant activities of selected spe- cies of seaweed from Danish coast, Food Chem., 138, 1670–1681 (2013). (43) I. F. Almeida, P. C. Costa, and M. F. Bahia, Evaluation of functional stability and batch-to-batch repro- ducibility of a Castanea sativa leaf extract with antioxidant activity, AAPS PharmSciTech, 11, 120–125 (2010). (44) Y. S. Choi, J. H. Choi, D. J. Han, H. Y. Kim, M. A. Lee, H. Kim, D. H. Song, J. W. Lee, and C. J. Kim, Effects of chestnut (Castanea sativa mill.) peel powder on quality characteristics of chicken emulsion sausages, Korean J Food Sci. Anim. Resour., 30, 755–763 (2010). (45) H. X. Wang and T. B. Ng, Purifi cat i on of castamollin, a novel antifungal protein from Chinese chestnuts, Protein Expr. Purif., 32, 44–52 (2003). (46) A. Prakash and R. Baskaran, Acerol a , an untapped functional superfruit: a review on latest frontiers, J. Food Sci. Technol., 55, 3373–3384 (2018).
OXIDATIVE STABILITY OF COSMETIC EMULSIONS WITH PLANT EXTRACTS 199 (47) A. Vendramini and L. Trugo, Chemic a l composition of acerola fruit (Malpighia punicifolia L.) at three stages of maturity, Food Chem., 71, 195–198 (2000). (48) J. M. Alvarez-Suarez, F. Giampieri , M. Gasparrini, L. Mazzoni, C. Santos-Buelga, A. M. González- Paramás, T. Y. Forbes-Hernández, S. Afrin, T. Páez-Watson, J. L. Quiles, and M. Battino, The protec- tive effect of acerola (Malpighia emarginata) against oxidative damage in human dermal fi broblasts through the improvement of antioxidant enzyme activity and mitochondrial functionality, Food Funct., 8, 3250–3258 (2017). (49) P. Malinowska, A. Gliszczyńska-Świglo, and H. Szymusiak, Protective effect of commercial acerola, willow, and rose extracts against oxidation of cosmetic emulsions containing wheat germ oil, Eur. J. Lipid Sci. Technol., 116, 1553–1562 (2014). (50) G. C. Yen, P. D. Duh, and H. L. Tsai, Anti o xidant and pro- oxidant properties of ascorbic acid and gal- lic acid, Food Chem., 79, 307–313 (2002). (51) S. H. Lee, T. Oe, and I. A. Blair, Vitamin C - induced decomposition of lipid hydroperoxides to endogenous genotoxins, Science, 292, 2083–2086 (2001). (52) E. N. Frankel, Lipid Oxidation (The Oily Pres s Dundee, Scotland. Ltd., Bridgewater, United Kingdom, 1998). (53) A. Selahvarzian, A. Alizadeh, P. A. Baharvand , O. A. Eldahshan, and B. Rasoulia, Medicinal properties of Rosa canina L, Herb. Med. J., 3, 77–84 (2018). (54) I. Roman, A. Stănilă, and S. Stănilă, Bioacti v e compounds and antioxidant activity of Rosa canina L. biotypes from spontaneous fl ora of Transylvania, Chem. Cent. J., 7, 73 (2013). (55) M. Grajzer, A. Prescha, K. Korzonek, A. Wojakowsk a , M. Dziadas, A. Kulma, and H. Grajeta, Characteristics of rose hip (Rosa canina L.) cold-pressed oil and its oxidative stability studied by the differential scanning calorimetry method, Food Chem., 188, 459–466 (2015). (56) M. Shara and S. J. Stohs, Effi cacy and safety of w h ite willow bark (Salix alba) extracts, Phytother Res., 29, 1112–1116 (2015). (57) P. A. B. Ramos, C. Moreirinha, S. Silva, E. M. Cost a , M. Veiga, E. Coscueta, S. Santos, A. Almeida, M. M. Pintado, C. Freire, A. Silva, and A. Silvestre, The health-promoting potential of Salix spp. bark polar extracts: key insights on phenolic composition and in vitro bioactivity and biocompatibility, Antioxidants, 8, 609 (2019). (58) M. V. Michalun and J. C. DiNardo, Milady’s Skin Car e and Cosmetic Ingredients Dictionary, 3rd Ed. (Cengage Learning, Clifton Park, NY, 2015).
Purchased for the exclusive use of nofirst nolast (unknown) From: SCC Media Library & Resource Center (library.scconline.org)























































































































