TREHALOSE IN HAIR CARE 241 (9) S. Ohtake and Y. J. Wang, Trehalose: Current use and future applications, J Pharm. Sci., 100(6), 2020–2053 (2011). (10) GNPD or Global New Products Database (www.gnpd.com) lists many hair products containing trehalose from companies such as Unilever, Avon, Redken, etc. (11) M. Nakagaki, H. Nagase, and H. Ueda, Stabilization of the lamellar structure of phosphatidylcholine by complex-formation with trehalose, J. Membr. Sci., 1328, 197–206 (1992). (12) H. Yoshii, T. Furuta, J. Kudo, and P. Linko, Crystal transformation from anhydrous alpha-maltose to hydrous beta-maltose and from anhydrous trehalose to hydrous trehalose, Biosci. Biotechnol. Biochem., 64, 1147–1152 (2000). (13) R. Surana, A. Pyne, and R. Suryanarayanan, Effect of preparation method on physical properties of amorphous trehalose, Pharm. Res., 21, 867–874 (2004). (14) D. J. Van Drooge, W. L. J. Hinrichs, and H. W. Frijlink, Incorporation of lipophilic drugs in sugar glasses by lyophilization using a mixture of water and tertiary butyl alcohol as solvent, J. Pharm. Sci., 93(3), 713–725 (2004). (15) F. J. Wortmann, M. Stapels, and L. Chandra, Modeling the time-dependent water wave stability of human hair, J. Cosmet. Sci., 61(1), 31–38 (2010). (16) F. J. Wortmann, M. Stapels, and L. Chandra, Humidity-dependent bending recovery and relaxation of human hair, J. Appl. Poly. Sci., 113(5), 3336–3344 (2009). (17) E. H. Hunter, C. S. Frampton, D. Q. M. Craig, and P. S. Belton, The use of dynamic vapour sorption methods for the characterization of water uptake in amorphous trehalose, Carbohydrate Res., 345, 1938–1944 (2010). (18) A. Moran and G. Buckton, Studies of the crystallization of amorphous trehalose using simultaneous gravimetric vapor sorption/near IR (GVS/NIR) and “modulated” GVS/NIR, AAPS PharmSciTech, 10(1), 297–302 (2009). (19) K. Keis, C. L. Huemmer, and Y. K. Kamath, Effect of oil fi lms on moisture vapor absorption on human hair, J. Cosmet. Sci., 58, 135–145 (2007). (20) J. H. Crowe, L. M. Crowe, and D. Chapman, Preservation of membranes in anhydrobiotic organisms—The role of trehalose, Science, 223, 701–703 (1984). (21) C. W. B. Lee, S. K. Dasgupta, J. Mattai, G. G. Shipley, O. H. Abdel-Mageed, A. Makriyannis, and R. G. Griffi n, Characterization of the L-lambda phase in trehalose-stabilized dry membranes by solid state NMR and X-ray diffraction, Biochemistry, 28, 5000–5009 (1989). (22) J. H. Crowe, L. M. Crowe, J. F. Carpenter, and C. Wistrom, Stabilization of dry phospholipid bilayers and proteins by sugars, Biochem. J., 242, 1–10 (1987). (23) J. F. Carpenter and J. H. Crowe, An infrared spectroscopic study of the interactions of carbohydrates with dried proteins, Biochemistry, 28, 3916–3922 (1989). (24) A. H. Haines, Non-equivalence of D- and L-trehalose in stabilising alkaline phosphatase against freeze- drying and thermal stress. Is chiral recognition involved? Org. Biomol. Chem., 4, 702–706 (2006). (25) J. L. Green and C. A. Angell, Phase relations and vitrifi cation in saccharide-water solutions and the trehalose anomaly, J. Phys. Chem., 93, 2880–2882 (1989). (26) H. Levine and L. Slade, Another view of trehalose for drying and stabilizing biological materials, Biopharm., 5, 36–40 (1992). (27) K. L. Koster, M. S. Webb, G. Bryant, and D. V. Lynch, Interactions between soluble sugars and POPC (1-palmitoyl-2-oleoylphosphatidylcholine) during dehydration: Vitrifi cation of sugars alters the phase behavior of the phospholipid, Biochim. Biophys. Acta, 1193, 143–150 (1994). (28) T. Furuki, K. Oku, and M. Sakurai, Thermodynamic, hydration and structural characteristics of alpha, alpha-trehalose, Frontiers Biosci., 14, 3523–3535 (2009). (29) Q. Liu, R. K. Schmidt, B. Teo, P. A. Karplus, and J. W. Brady, Molecular dynamics studies of the hydration of alpha, alpha-trehalose, J Am. Chem. Soc., 119(33), 7851–7862 (1997).
Previous Page Next Page