596 JOURNAL OF COSMETIC SCIENCE CONCLUSION Chronic itch is the most frequently observed symptom of inflammatory skin disorders, (e.g., AD, allergic contact dermatitis, and psoriasis) leading to reduced quality of life due to sleep deprivation and mental distress. The skin itch-sensory pathway constitutes a complex interplay of inflammation, neuronal sensation, and epidermal barrier function. Various herbal formulations are used as the main ingredients in functional cosmetics to soothe itchy skin. This study evaluated the effects of three different herbal extracts (A houstonianum, B falcatum, and S chinensis) on the modulation of itch-inducing factors, including the epidermal barrier component FLG, IL31, TSLP, and β-endorphin, in HaCaT cells. FLG is a structural protein found predominantly in the keratin fibers of keratinocytes, which plays a critical role in maintaining epidermal hydration and skin barrier function. The reduction of FLG expression is associated with skin barrier damage and high susceptibility to itching. Keratinocyte-derived IL31, TSLP, and β-endorphin transmit itch-specific sensitization by binding directly to sensory neurons. Our results demonstrated that the combination of A houstonianum, B falcatum, and S chinensis restored IL4 + IL13–induced reduction in FLG expression and suppressed the expression of IL31, TSLP, and β-endorphin induced by IL4 in keratinocytes. The combination of the three extracts showed no cytotoxicity and higher efficacy than when each was used individually. In addition, since no adverse skin reactions were observed during the clinical investigation, it was considered an effective and safe cream that can help improve itching by restoring the skin barrier function. These findings suggest that a mixture of A houstonianum, B falcatum, and S chinensis can be a beneficial ingredient in cosmetic applications for inflammatory itch. Further comprehensive studies are needed to better understand the molecular mechanism underlying the anti-itch efficacy of these extracts against various skin inflammatory disorders. ACKNOWLEDGMENTS This work was supported by the Seoul R&BD Program (TB201060), Republic of Korea, and by the KU Research Professor Program of Konkuk University. REFERENCES (1) A. Ikoma, M. Steinhoff, S. Ständer, G. Yosipovitch, and M. Schmelz, The neurobiology of itch, Nat. Rev. Neurosci., 7(7), 535–547 (2006). (2) G. Yosipovitch, Dry skin and impairment of barrier function associated with itch — new insights, Int. J. Cosmet. Sci., 26(1), 1–7 (2004). (3) G. Yosipovitch, J. D. Rosen, and T. Hashimoto, Itch: from mechanism to (novel) therapeutic approaches, J. Allergy Clin. Immunol., 142(5), 1375–1390 (2018). (4) G. Yosipovitch and J. D. Bernhard, Clinical practice. Chronic pruritus, N. Engl. J. Med., 368(17), 1625– 1634 (2013). (5) C. Zeidler, M. P. Pereira, F. Huet, L. Misery, K. Steinbrink, and S. Ständer, Pruritus in autoimmune and inflammatory dermatoses, Front. Immunol., 10, 1303 (2019). (6) F. Dalgard, A. Svensson, J. Ø. Holm, and J. Sundby, Self-reported skin morbidity among adults: associations with quality of life and general health in a Norwegian survey, J. Investig. Dermatol. Symp. Proc., 9(2), 120–125 (2004). (7) J. D. Lindh and M. Bradley, Clinical effectiveness of moisturizers in atopic dermatitis and related disorders: a systematic review, Am. J. Clin. Dermatol., 16(5), 341–359 (2015). (8) T. Hoppe, M. C. Winge, M. Bradley, M. Nordenskjöld, A. Vahlquist, H. Törmä, and B. Berne, Moisturizing treatment of patients with atopic dermatitis and ichthyosis vulgaris improves dry skin,
597 SUPPRESSION OF ITCHING BY THREE HERBAL ETHANOLIC EXTRACTS but has a modest effect on gene expression regardless of FLG genotype, J. Eur. Acad. Dermatol. Venereol., 29(1), 174–177 (2015). (9) J. Hong, J. Buddenkotte, T. G. Berger, and M. Steinhoff, Management of itch in atopic dermatitis, Semin. Cutan. Med. Surg., 30(2), 71–86 (2011). (10) L. S. Joshi and H. A. Pawar, Herbal cosmetics and cosmeceuticals: an overview, El Med. J., 3(1), 170 (2015). (11) S. K. Gediya, R. B. Mistry, U. K. Patel, M. Blessy, and H. N. Jain, Herbal plants: used as a cosmetics, J. N. Atl. Prod. Plant Resour., 1, 24–32 (2011). (12) H. Wiedenfeld and A. Andrade-Cetto, Pyrrolizidine alkaloids from ageratum houstonianum mill, Phytochemistry, 57(8), 1269–1271 (2001). (13) B. Singh and J. Singh, Ethnobotanical uses of some plants from central Haryana, India, Phytodiversity, 1, 7–24 (2014). (14) N. P. Kurade, V. Jaitak, V. K. Kaul, and O. P. Sharma, Chemical composition and antibacterial activity of essential oils of lantana camara, ageratum houstonianum and eupatorium adenophorum, Pharm. Biol., 48(5), 539–544 (2010). (15) D. K. Pandey, H. Chandra, N. N. Tripathi, and S. N. Dixit, Mycotoxicity in leaves of some higher plants with special reference to that of ageratum houstonianum mill, Mykosen, 26(11), 565–573 (1983). (16) C. Menut, G. Lamaty, P. H. A. Zollo, J. R. Kuiate, and J. M. Bessière, Aromatic plants of tropical central Africa. Part X Chemical composition of the essential oils of ageratum houstonianum Mill and ageratum conyzoides L. from Cameroon, Flavour Fragr. J., 8(1), 1–4 (1993). (17) N. Kumar, Biological potential of a weed ageratum houstonianum mill: a review, Indo Am. J. Pharm. Res., 4, 2683–2689 (2014). (18) R. Sougrat, M. Morand, C. Gondran, P. Barré, R. Gobin, F. Bonté, M. Dumas, J. M. Verbavatz, Functional expression of AQP3 in human skin epidermis and reconstructed epidermis, J. Invest. Dermatol., 118(4), 678–685 (2002). (19) S. Y. Shin, D. H. Lee, H. N. Gil, B. S. Kim, J. S. Choe, J. B. Kim, Y. H. Lee, and Y. Lim, Agerarin, identified from Ageratum houstonianum, stimulates circadian CLOCK-mediated aquaporin-3 gene expression in HaCaT keratinocytes, Sci. Rep., 7(1), 11175 (2017). (20) S. S. Ahn, Y. H. Lee, H. Yeo, Y. Lee, D. S. Min, Y. Lim, and S. Y. Shin, Effect of 6,7-dimethoxy-2,2- dimethyl-2H-chromene (agerarin) on the recovery of filaggrin expression through targeting of Janus kinases in the inflammatory skin, J. Food Drug Anal., 28(3), 449–460 (2020). (21) M. L. Ashour and M. Wink, Genus Bupleurum: a review of its phytochemistry, pharmacology and modes of action, J. Pharm. Pharmacol., 63(3), 305–321 (2011). (22) C. N. Lu, Z. G. Yuan, X. L. Zhang, R. Yan, Y. Q. Zhao, M. Liao, and J. X. Chen, Saikosaponin a and its epimer saikosaponin d exhibit anti-inflammatory activity by suppressing activation of NF-κB signaling pathway, Int. Immunopharmacol., 14(1), 121–126 (2012). (23) B. Yuan, R. Yang, Y. Ma, S. Zhou, X. Zhang, and Y. Liu, A systematic review of the active saikosaponins and extracts isolated from radix bupleuri and their applications, Pharm. Biol., 55(1), 620–635 (2017). (24) Z. A. Du, M. N. Sun, and Z. S. Hu, Saikosaponin a ameliorates LPS-induced acute lung injury in mice, Inflammation, 41(1), 193–198 (2018). (25) W. H. Park, S. Kang, Y. Piao, C. J. Pak, M. S. Oh, J. Kim, M. S. Kang, and Y. K. Pak, Ethanol extract of Bupleurum falcatum and saikosaponins inhibit neuroinflammation via inhibition of NF-κB, J. Ethnopharmacol., 174, 37–44 (2015). (26) T. T. Bui, C. H. Piao, E. Hyeon, Y. Fan, D. W. Choi, S. Y. Jung, B. H. Jang, H. S. Shin, C. H. Song, and O. H. Chai, Preventive effect of Bupleurum chinense on nasal inflammation via suppressing T helper type 2, eosinophil and mast cell activation, Am. J. Chin. Med., 47(2), 405–421 (2019). (27) C. H. Piao, C. H. Song, E. J. Lee, and O. H. Chai, Saikosaponin a ameliorates nasal inflammation by suppressing IL6/ROR-Γt/STAT3/IL17/NF-κB pathway in OVA-induced allergic rhinitis, Chem. Biol. Interact., 315, 10.8874 (2020). (28) A. Szopa, R. Ekiert, and H. Ekiert, Current knowledge of Schisandra chinensis (turcz.) baill. (Chinese magnolia vine) as a medicinal plant species: a review on the bioactive components, pharmacological properties, analytical and biotechnological studies, Phytochem. Rev., 16(2), 195–218 (2017). (29) K. P. Lee, S. Kang, S. J. Park, J. M. Kim, J. M. Lee, A. Y. Lee, H. Y. Chung, Y. W. Choi, Y. G. Lee, and D. S. Im, Anti-allergic effect of alpha-cubebenoate isolated from Schisandra chinensis using in vivo and in vitro experiments, J. Ethnopharmacol., 173, 361–369 (2015). (30) B. Lee, E. A. Bae, H. T. Trinh, Y. W. Shin, T. T. Phuong, K. H. Bae, and D. H. Kim, Inhibitory effect of schizandrin on passive cutaneous anaphylaxis reaction and scratching behaviors in mice, Biol. Pharm. Bull., 30(6), 1153–1156 (2007).
Purchased for the exclusive use of nofirst nolast (unknown) From: SCC Media Library & Resource Center (library.scconline.org)