NANOBERRIES FOR TOPICAL DELIVERY OF ANTIOXIDANTS 479 Phospholipid/Natterman (Köln, Germany) for providing the SPC and “The Berry Store” (San Pedro, Argentina) for kindly supporting our research by donating the blueberries. REFERENCES 1. C. S. Evans, “Methods in Plant Biochemistry: 1. Plant Phenolics,” in Phytochemical Analysis, J. B. Harborne, Ed. (Academic Press, New York and London, 1991), Vol. 2, Issue 1, p. 48. 2. J. J. Macheix, A. Fleuriet, and J. Billot, Fruit Phenolics (CRC Press, Boca Raton, FL, 1990). 3. F. Shahidi and M. Naczk, Food Phenolics: Sources, Chemistry, Effects, Applications (Technomic Publishing Company, Lancaster, 1995). 4. R. L. Prior, G. Cao, A. Martin, E. Sofi c, J. McEwen, C. O’Brien, N. Lischner, M. Ehlenfeldt, W. Kalt, G. Krewer, and C. M. Mainland, antioxidant capacity as Infl uenced by total phenolic and anthocyanin content, maturity, and variety of Vaccinium species. J. Agr. Food Chem., 46(7), 2686–2693 (1998). 5. C. A. Rice-Evans and N. J. Miller, ChemInform abstract: Structure—antioxidant activity relationship of fl avonoids and isofl avonoids. ChemInform, 29(19) (1998). 6. S. Y. Wang and H. S. Lin, Antioxidant activity in fruits and leaves of blackberry, raspberry, and straw- berry varies with cultivar and developmental stage. J. Agr. Food. Chem., 48(2), 140–146 (2000). 7. M. P. Kahkonen, A. I. Hopia, and M. Heinonen, Berry phenolics and their antioxidant activity. J. Agr. Food Chem., 49(8), 4076–4082 (2001). 8. N. P. Seeram, Berry fruits: Compositional elements, biochemical activities, and the impact of their in- take on human health, performance, and disease. J. Agr. Food Chem., 56(3), 627–629 (2008). 9. B. N. Ames, Dietary carcinogens and anticarcinogens. Oxygen radicals and degenerative diseases. Sci- ence, 221(4617), 1256–1264 (1983). 10. M. G. Hertog, E. J. Feskens, P. C. Hollman, M. B. Katan, and D. Kromhout, Dietary antioxidant fl avonoids and risk of coronary heart disease: The Zutphen Elderly Study. Lancet, 342(8878), 1007–1011 (1993). 11. P. Knekt, R. Jarvinen, A. Reunanen, and J. Maatela, Flavonoid intake and coronary mortality in Fin- land: A cohort study. BMJ, 312(7029), 478–481 (1996). 12. M. P. Kähkönen, J. Heinämäki, V. Ollilainen, and M. Heinonen, Berry anthocyanins: Isolation, identi- fi cation, and antioxidant activities. J. Sci. Food. Agr., 83(14), 1403–1411 (2003). 13. B. Sun and M. Fukuhara, Effects of co-administration of butylated hydroxytoluene, butylated hydroxy- anisole, and fl avonoids on the activation of mutagens and drug-metabolizing enzymes in mice. Toxicol- ogy, 122(1–2), 61–72 (1997). 14. M. Hirose, Y. Takesada, H. Tanaka, S. Tamano, T. Kato, and T. Shirai, Carcinogenicity of antioxidants BHA, caffeic acid, sesamol, 4-methoxyphenol, and catechol at low doses, either alone or in combination, and modulation of their effects in a rat medium-term multi-organ carcinogenesis model. Carcinogenesis, 19(1), 207–212 (1998). 15. C. Manach, A. Scalbert, C. Morand, C. Rémésy, and L. Jiménez, Polyphenols: Food sources and bioavail- ability. Am. J. Clin. Nutr., 79(5), 727–747 (2004). 16. C. A. Lipinski, F. Lombardo, B. W. Dominy, and P. J. Feeney, Experimental and computational ap- proaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug. Deliver. Rev., 46(1–3), 3–26 (2001). 17. C. Manach, G. Williamson, C. Morand, A. Scalbert, and C. Rémésy, Bioavailability and bioeffi cacy of poly- phenols in humans. I. Review of 97 bioavailability studies. Am. J. Clin. Nutr., 81(1), 230S–242S (2005). 18. G. Murphy and H. Nagase, Progress in matrix metalloproteinase research. Mol. Aspects. Med., 29(5), 290–308 (2008). 19. M. Cascales Angosto and J. A. Álvarez-Gómez, Metaloproteinasas, matriz extracelular y cáncer. An. R. Acad. Nac. Farm., 76(1), 59–84 (2010). 20. D. Burdulis, A. Sarkinas, I. Jasutiene, E. Stackevicene, L. Nikolajevas, and V. Janulis, Comparative study of anthocyanin composition, antimicrobial and antioxidant activity in bilberry (Vaccinium myrtillus L.) and blueberry (Vaccinium corymbosum L.) fruits. Acta Pol. Pharm., 66(4), 399–408 (2009). 21. G. Cevc and G. Blume, Lipid vesicles penetrate into intact skin owing to the transdermal osmotic gra- dients and hydration force. Biochim. Biophys. Acta., 1104(1), 226–232 (1992). 22. G. Cevc and D. Gebauer, Hydration-driven transport of deformable lipid vesicles through fi ne pores and the skin barrier. Biophys. J., 84(2 Pt 1), 1010–1024 (2003).
JOURNAL OF COSMETIC SCIENCE 480 23. J. Montanari, C. Maidana, M. I. Esteva, C. Salomon, M. J. Morilla, and E. L. Romero, Sunlight trig- gered photodynamic ultradeformable liposomes against Leishmania braziliensis are also leishmanicidal in the dark. J. Control Release, 147(3), 368–376 (2010). 24. D. D. Verma, S. Verma, G. Blume, and A. Fahr, Liposomes increase skin penetration of entrapped and nonentrapped hydrophilic substances into human skin: A skin penetration and confocal laser scanning microscopy study. Eur. J. Pharm. Biopharm., 55(3), 271–277 (2003). 25. C. Sinico, M. Manconi, M. Peppi, F. Lai, D. Valenti, and A. M. Fadda, Liposomes as carriers for dermal delivery of tretinoin: In vitro evaluation of drug permeation and vesicle–skin interaction. J. Control Re- lease, 103(1), 123–136 (2005). 26. S. Golmohammadzadeh, M. R. Jaafarixx, and N. Khalili, Evaluation of liposomal and conventional formulations of octyl methoxycinnamate on human percutaneous absorption using the stripping method. J. Cosmet. Sci., 59(5), 385–398 (2008). 27. J. Montanari, M. J. Morilla, and E. L. Romero, “Ultradeformable Liposomes for Topic Application of Cosmetic Actives can Modulate Their Destination Across the Stratum Corneum,” in 26th IFSCC Con- gress 2010 Innovation and Responsibility: Cosmetics Forever, Buenos Aires, Argentina (International Federa- tion of Societies of Cosmetic Chemists, 2010). 28. G. Cevc, Lipid vesicles and other colloids as drug carriers on the skin. Adv. Drug. Deliver. Rev., 56(5), 675–711 (2004). 29. M. M. Elsayed, O. Y. Abdallah, V. F. Naggar, and N. M. Khalafallah, Lipid vesicles for skin delivery of drugs: Reviewing three decades of research. Int. J. Pharm., 332(1–2), 1–16 (2007). 30. L. Denoble, K. Knutson, and T. Kurihara-Bergstrom, Enhanced skin permeability by ethanol: Mechanistic studies of human stratum corneum measured by DSC and FTIR. Pharm. Res., 4(59s) (1987). 31. G. Embery and P. H. Dugard, The isolation of dimethyl sulfoxide soluble components from human epidermal preparations: A possible mechanism of action of dimethyl sulfoxide in effecting percutaneous migration phenomena. J. Invest. Dermatol., 57(5), 308–311 (1971). 32. J. Hadgraft, Passive enhancement strategies in topical and transdermal drug delivery. Int. J. Pharm., 184(1), 1–6 (1999). 33. P. L. Honeywell-Nguyen, A. M. de Graaff, H. W. Groenink, and J. A. Bouwstra, The in vivo and in vitro interactions of elastic and rigid vesicles with human skin. Biochim. Biophys. Acta., 1573(2), 130– 140 (2002). 34. M. Trotta, E. Peira, M. E. Carlotti, and M. Gallarate, Deformable liposomes for dermal administration of methotrexate. Int. J. Pharm., 270(1–2), 119–125 (2004). 35. M. M. Elsayed, O. Y. Abdallah, V. F. Naggar, and N. M. Khalafallah, Deformable liposomes and etho- somes as carriers for skin delivery of ketotifen. Pharmazie, 62(2), 133–137 (2007). 36. R. R. Boinpally, S. L. Zhou, S. Poondru, G. Devraj, and B. R. Jasti, Lecithin vesicles for topical delivery of diclofenac. Eur. J. Pharm. Biopharm., 56(3), 389–392 (2003). 37. D. Li, Z. Wu, N. Martini, and J. Wen, Advanced carrier systems in cosmetics and cosmeceuticals: a review. J. Cosmet. Sci., 62(6), 549–563 (2011). 38. A. Căta, M. Ștefănu, C. Tănasie, and R. Pop, Comparative analysis of bilberries alcoholic extracts re- garding to anthocyanins content, total phenolics and antioxidant activity. Ovidius Univ. Ann. Chem., 21(1), 15–19 (2010). 39. M. Gulluce, F. Sahin, M. Sokmen, H. Ozer, D. Daferera, A. Sokmen, M. Polissiou, A. Adiguzel, and H. Ozkan, Antimicrobial and antioxidant properties of the essential oils and methanol extract from Mentha longifolia L. ssp. longifolia. Food Chem., 103(4), 1449–1456 (2007). 40. K. Slinkard and V. L. Singleton, Total phenol analysis: automation and comparison with manual meth- ods. Am. J. Enol. Viticult., 28(1), 49–55 (1977). 41. S. F. Chandler and J. H. Dodds, The effect of phosphate, nitrogen, and sucrose on the production of phenolics and solasidine in callus cultures of Solanum laciniatum. Plant Cell Reports, 2, 105–108 (1983). 42. E. E. Nicoue, S. Savard, and K. Belkacemi, Anthocyanins in wild blueberries of Quebec: Extraction and identifi cation. J. Agr. Food Chem., 55(14), 5626–5635 (2007). 43. M. M. Giusti and R. E. Wrolstad, “Characterization and Measurement of Anthocyanins by UV-Visible Spectroscopy,” in Current Protocols in Food Analytical Chemistry (John Wiley & Sons Inc, Hoboken, NJ, 2001). 44. F. J. Francis and P. C. Markakis, Food colorants: Anthocyanins. Crit. Rev.Food Sci., 28(4), 273–314 (1989).
Previous Page Next Page