PRACTICAL SELECTING METHOD OF WAVE LOTION FOR HAIR DRESSER 55 characteristics of these crosslinks may therefore lead to the development of new wave lo- tions that result in a reduced level of hair damage. ACKNOWLEDGMENTS The authors thank Drs. K. Murakami, H. Oikawa, K. Arai, and K. Kawamura for assis- tance with this manuscript. We also acknowledge the kind support of our colleagues at formerly named Mitsui Petrochemical Industries Ltd, prior to the merger with Mitsui Chemical Ltd. Moreover, we thank the young female students at Toyama Senior High School for agreeing to donate virgin hair samples, and Dr. S. Roeper for providing the German lady’s virgin hair. We also gratefully acknowledge the cooperation of the beauty parlors, BOY and ADOMI. Finally, the authors thank Enago (www.enago.jp) for the Eng- lish review. REFERENCES (1) K. Arai, “Physical and chemical properties of wool and human hair” in Newest Hair Science, 1st Ed T. Matsuzaki, K. Arai, K. Jookoo, M. Hosokawa, and K. Nakamura. Eds. (Fragrance Journal LTD., Tokyo, 2003), 1st Ed., pp. 59–153. (2) C. R. Robbins, Chemical and Physical Behaviour of Human Hair, 4th Ed. (Springer, New York, 2002), pp.225–288. (3) D. E. Deem and M. M. Rieger, Mechanical hysteresis of chemically modifi ed hair, J. Cosmet Sci., 19, 395–410 (1968). (4) F.-J. Wortmann and I. Souren, Extensional properties of human hair and permanent waving, J. Cosmet Sci.,38, 125–140 (March/April 1987). (5) A. V. Tobolsky, Mechanische Eigenschaften und Struktur von Polymeren (Berliner Union, Stuttgart, 1967). (6) G. A. Etlmann, Die modenen Dauerwellsysteme, Parfumerie und Kometik, 64, 541–544 (1983). (7) J. Y. Dai, K. Li, P. F. Lee, X. Zhao, and S. Redkar, STEM study of interfacial reaction at HfxAl1-xOy/Si, Thin Solid Films, 462–463, 114–117 (2004). (8) E. F. Denby, A note on the interconversion of creep, relaxation and recovery, Reol Acta, 14, 591–593 (1975). Figure 13. Relationship between Pa and both the Ero and the 20% index during extensional permanent treatment using the same hairs (●) Ero (left axis) and ( ) 20% index (right axis). Note: Both the Ero and 20% index values simultaneously changed at approximately 80% of Pa.
JOURNAL OF COSMETIC SCIENCE 56 (9) S. De Jong, Linear viscoelasticity applied to wool setting treatments, Text Res J. 55, 647–653 (1985). (10) F.-J. Wortmann and N. Kure, Bending relaxation properties of human hair permanent waving perfor- mance, J. Cosmet Sci, 41, 123–139 (March/April 1990). (11) R. R. Wickett, Kinetic studies of hair reduction using a single fi ber technique, J. Cosmet Sci., 34, 301–316 (September/October 1983). (12) M. A. Manuszak, E. T. Borish, and R. R. Wickett, Kinetics of disulfi de bond reduction in hair by am- monium thioglycolate and dithioglycolate, J. Cosmet Sci., 47, 49–58 (1998). (13) J. P. Danehy and C. J. Noel, The relative nucleophilic character of several mercaptans toward ethylene oxide, J. Am Chem Soc., 82, 2511–2515 (1960). (14) R. H. De Deken, Étude Spectrophotomérique de la dissociation de la fonction sulfhydrule et structure moléculaire de la cystéine, Biochimica et Biophysica Acta, 19, 45–51 (1956). (15) M. L. Garcia, E. M. Nadgorny, and L. J. Wolfram, Physicochemical changes in hair during permanent waving, J. Cosmet Sci., 41, 149–154 (1990). (16) A. Kazuhara and T. Hori, Reduction mechanism of L-cysteine on keratin fi bers using microspectropho- tometry and Raman spectroscopy, Biopolymer, 79, 324–554 (2005). (17) M. Feughelman, A comment in “Bending relaxation in properties of human hair and permanent waving performance,” J. Cosmet Sci., 42, 129–131 (1991). (18) W. Stricks, I. M. Kolthoff, and N. Tanaka, The polarographic and amperometric determination of di- sulfi de groups, Anal Chem., 26, 299–303 (1954). (19) M. Feughelman, A two-phase structure for keratin fi bers, Text Res J., 29, 223–228 (1959). (20) S. Naito, K. Arai, M. Hirano, N. Nagasawa, and M. Sakamoto, Number, type and location of crosslinks in hair structure of keratin. V. number and type of crosslinks in microstructure of untreated potassium cyanide treated human hair, J. Appl Polym Sci., 61, 1913–1925 (1996). (21) Y.Ueno, U.S.Patent, No. 5,080,890, January 14, 1992.
Previous Page Next Page