ADVANCED CARRIER SYSTEMS 561 (19) W. Abraham and D. T. Downing, Interaction between corneocytes and stratum corneum lipid lipo- somes in vitro, Biochim. Biophys. Acta, 1021(2), 119–125 (1990). (20) M. Kirjavainen, A. Uritt, and I. Jaaskelainen, Interaction of liposomes with human skin in vitro—The infl uence of lipid composition and structure, Biochim. Biophys. Acta, 1304(3), 179–189 (1996). (21) M. H. Schmid and H. C. Korting, Therapeutic progress with topical liposome drugs for skin disease, Adv. Drug. Deliv. Rev., 18, 355–342 (1996). (22) G. Betz, A. Aeppli, N. Menshutina, and H. Leuenberger, In vivo comparison of various liposome for- mulations for cosmetic application, Int. J. Pharmaceuti., 296, 44–54 (2005). (23) N. Moussaoui, M. Cansell, and A. Denizot, Marinosomes®, marine lipid-based liposomes: Physical characterization and potential application in cosmetics, Ibid., 242, 361–365 (2002). (24) T. Makoto, K. Dai, A. Yonathan, T. Kensaku, and W. Koji, Liposomes encapsulating Aloe vera leaf gel extract signifi cantly enhance proliferation and collagen synthesis in human skin cell lines. J. Oleo Sci., 58, 643–650 (2009). (25) Delivery System Handbook for Personal Care and Cosmetic Products Technology, Applications, and Formulations (William Andrew Publishers, New York, 2005), pp. 297. (26) C. Sinico et al. Liposomes as carriers for dermal delivery of tretinoin: In vitro evaluation of drug perme- ation and vesicle–skin interaction., J. Control. Release, 103, 123–136 (2005). (27) A. Semalty, M. Semalty, M. S. Rawat, and F. Franceschi, Supramolecular phospholipids–polyphenolics interaction: The PHYTOSOME® strategy to improve the bioavailability of phytochemicals, Fitoterapia, 81, 306–314 (2010). (28) J.-Y. Fang, T.-L. Hwang, and C.-L. Fang,. Enhancement of the transdermal delivery of catechins by li- posomes incorporating anionic surfactants and ethanol, Int. J. Pharmaceut., 310, 131–138 (2006). (29) R. M. Handjani-Vila, A. Ribier, B. Rondot, and G. Vanlerberghie. Dispersions of lamellar phases of non-ionic lipids in cosmetic products, Int. J. Cosmet. Sci., 1, 303–314 (1979). (30) A. Azeem, M. K. Anwer, and S. Talegaonkar, Niosomes in sustained and targeted drug delivery: Some recent advances, J. Drug Targeting, 17, 671–689 (2009). (31) I. F. Uchegbu and S. P. Vyas, Non-ionic surfactant based vesicles (niosomes) in drug delivery, Int. J. Pharmaceut., 172, 33–70 (2008). (32) M. J. Choi and H. I. Maibach. Liposomes and niosomes as topical drug delivery systems, Skin Pharmacol. Physiol., 18, 209–219 (2005). (33) A. Azeem, N. Jain, and Z. Iqbal. Feasibility of proniosomes based transdermal delivery of frusemide: Formulation optimization and pharmacotechnical evaluation, Pharm. Dev. Technol., 1, 155–163 (2008). (34) S. A. Wissing, and R. H. Müller, Solid lipid nanoparticles as carrier for sunscreens: In vitro release and in vivo skin penetration, J. Control. Release, 81, 225–233 (2002). (35) M. Manconi, C. Sinico, D. Valenti, et al., Niosomes as carriers for tretinoin: III. A study into the in vitro cutaneous delivery of vesicle-incorporated tretinoin, Int. J. Pharmaceut., 311, 11–19 (2006). (36) C. Hu and D. G. Rhodes, Proniosomes: A novel drug carrier preparation, Ibid., 206, 110–122 (2000). (37) Y. Wang, B. Wang, W. Qiao, and T. Yin. A novel controlled release drug delivery system for multiple drugs based on electrospun nanofi bers containing nanoparticles, J. Pharmacaeut. Sci., 99(12), 4805–4811 (2010). (38) S. Scheler, M. Kitzan, and A. Fahr, Cellular uptake and degradation behaviour of biodegradable poly(ethylene glycol-graft-methyl methacrylate) nanoparticles crosslinked with dimethacryloyl hydrox- ylamine, Int. J. Pharmaceut., 403(1–2), 207–218 (2010). (39) R. Schueller and P. Romanowski, Emerging Technoligies and the Future of Cosmetic Science. http://www. specialchem4cosmetics.com/services/articles.aspx?id=957&page=Nanomaterials. (40) S. Torrado, J. J. Torrado, and R. Cadórniga, Topical application of albumin microspheres containing vitamin A drug release and availability, Int. J. Pharmaceut., 86, 147–152 (1992). (41) Y. Yoshihisa, A. Honda, Q. L. Zhao, et al. Protective effects of platinum nanoparticles against UV-light- induced epidermal infl ammation, Exper. Dermatol., 19, 1000–1006 (2010). (42) S. Lu et al. Concentration effect of gold nanoparticles on proliferation of keratinocytes, Colloids Surf., B, in press. (43) S. Kokura et al., Silver nanoparticles as a safe preservative for use in cosmetics, Nanomed. Nanotechnol. Biol. Med., 6, 570–574 (2010). (44) G. J. Nohynek, J. Lademann, et al. Grey goo on the skin? Nanotechnology, cosmetic and sunscreen safety, Criti. Rev. Toxicol., 37(3), 251–277 (2007). (45) R. H. Müller, M. Radtke, and S. A. Wissing, Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations, Adv. Drug Deliv. Rev., 54, S131–S155 (2002).
JOURNAL OF COSMETIC SCIENCE 562 (46) J. Pardeike, A. Hommoss, et al, Lipid nanoparticles (SLN, NLC) in cosmetic and pharmaceutical dermal products, Int. J. Pharmaceut., 366(1–2), 170–184. (2009). (47) S. A. Wissing and R. H. Müller. Cosmetic applications for solid lipid nanoparticles (SLN), Int. J. Pharm., 254, 65–68 (2003). (48) V. Jenning, M. Schafer-Korting, and S. Gohla. Vitamin A-loaded solid lipid nanoparticles for topical use: Drug release properties, J. Control. Release, 66, 115–126 (2000). (49) V. Teeranachaideekul, R. H. Muller, and V. B. Junyaprasert. Encapsulation of ascorbyl palmitate in nanostructured lipid carriers—Effects of formulation parameters on physicochemical stability, Int. J. Pharm., 340, 198–206 (2007). (50) V. Jenning, A. Gysler, et al, Vitamin A loaded solid lipid nanoparticles for topical use: Occlusive proper- ties and drug targeting to the upper skin, Eur. J. Pharamaceut. Biopharmaceut., 49, 211–218 (2000). (51) V. Jenning, M. Schäfer-Korting, and S. Gohla, Vitamin A-loaded solid lipid nanoparticles for topical use: Drug release properties, J. Control. Release, 66, 115–126 (2000). (52) S. A. Wissing and R. H. Müller, Solid lipid nanoparticles as carrier for sunscreens: In vitro release and in vivo skin penetration, Ibid., 81, 225–233 (2002). (53) V. Teeranachaideekul, E. B. Souto, V. B. Junyaprasert, and R. H. Müller, Cetyl palmitate-based NLC for topical delivery of Coenzyme Q10—Development, physicochemical characterization and in vitro release studies, Eur. J. Pharmaceut. Biopharmaceut., 67, 141–148 (2007). (54) M. Üner, S. A. Wissing, G. Yener, and R. H. Müller, Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) for application of ascorbyl palmitate, Pharmazie, 60, 577–582 (2005). (55) R. H. Muller, M. Radtke, and S. A. Wissing. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations, Adv. Drug Deliv. Rev., Suppl, 54, S131–S155 (2002). (56) T. P. Hoar and J. H. Schulman, Transparent water-in-oil dispersions: The oleopathic hydro-micelle [1], Nature, 152, 102–103 (1943). (57) J. H. Schulman, W. Stoeckenius, and L. M. Prince, Mechanism of formation and structure of micro- emulsions by electron microscopy, J. Phys. Chem., 63, 1677–1680 (1959). (58) M. Changez and M. Varshney, Aerosol-OT microemulsions as transdermal carriers of tetracaine hydro- chloride, Drug Dev. Ind. Pharm., 26, 507–512 (2000). (59) V. B. Patravale and S. D. Mandawgade. Novel cosmetic delivery systems: An application update, Int. J. Cosmet. Sci., 30(1), 19–33 (2008). (60) M. Maruno, and P. A. Rocha-Filho, O/W nanoemulsion after 15 years of preparation: A suitable vehicle for pharamaceutical and cosmetic applications, J. Disper. Sci. Technol., 31, 17–22 (2010). (61) N. Atrux-Tallau, A. Denis, K. Padois, V. Bertholle, T. T. N. Huynh, M. Haftek, F. Falson, and F. Pirot. Skin absorption modulation: Innovative non-hazardous technologies for topical formulation, Open Der- matol. J., 4(1), 3–9 (2010). (62) A. Azeem, Z. I. Khan, M. Aqil, F. J. Ahmad, R. K. Khar, and S. Talegaonkar. Microemulsions as a sur- rogate carrier for dermal drug delivery, Drug Dev. Ind. Pharm., 35(5), 525–547 (2009). (63) S. P. Moulik and B. K. Paul, Structure, dynamics and transport properties of microemulsions, Adv. Col- loid Interface Sci., 78, 99–195 (1998). (64) Y.-H. Tsai, K.-F. Lee, Y.-B. Huang, C.-T. Huang, and P.-C. Wu, In vitro permeation and in vivo whiten- ing effect of topical hesperetin microemulsion delivery system, Int. J. Pharmaceuti. 388, 257–262 (2010). (65) M. A. Bolzinger, S. Brianc ¸on, J. Pelletier, H. Fessi, and Y. Chevalier, Percutaneous release of caffeine from microemulsion, emulsion and gel dosage forms, Eur. J. Pharmaceut. Biopharmaceut., 68, 446–451 (2008). (66) P. Jurkovic, M. Sentjurc, M. Gasperlin, J. Kristl, and S. Pecar, Skin protection against ultraviolet in- duced free radicals with ascorbyl palmitate in microemulsions, Ibid. 56, 59–66 (2003). (67) F. T. Vicentini et al., Quercetin in w/o microemulsion: In vitro and in vivo skin penetration and effi cacy against UVB-induced skin damages evaluated in vivo, Ibid., 69, 948–957 (2008). (68) E. Yilmaz and H.-H. Borchert, Design of a phytosphingosine-containing, positively-charged nanoemul- sion as a colloidal carrier system for dermal application of ceramides, Ibid., 60, 91–98 (2005). (69) A. Azeem et al., Microemulsions as a surrogate carrier for dermal drug delivery, Drug Dev. Ind. Pharm., 35, 525–547 (2009). (70) http://www.dior.com/beauty/int/en/skincare/faceskincare/fi rst_wrinkle_correction/r6080/y0626502/ py0626502.html (71) http://www.urbansense.com.au/main/page_products_botanical_skincare.html
Previous Page Next Page