ANTIAGING POTENTIAL OF FUCOXANTHIN 63 ( 3) H. W. Daniell, Smoker’s wrinkles. A study in the epidemiology of “crow’s feet”, Ann. Intern. Med., 75, 873–880 (1971). ( 4) G. L. Grove, M. J. Grove, and J. J. Leyden, Optical profi lometry: an objective method for quantifi cation of facial wrinkles, J. Am. Acad. Dermatol., 21, 631–637 (1989). ( 5) C. E. Griffi ths, T. S. Wang, T. A. Hamilton, J. J. Voorhees, and C. N. Ellis, A photonumeric scale for the assessment of cutaneous photodamage, Arch. Dermatol., 128, 347–351 (1992). ( 6) C. Y. Lu, H. C. Lee, H. J. Fahn, and Y. H. Wei, Oxidative damage elicited by imbalance of free radical scavenging enzymes is associated with large-scale mtDNA deletions in aging human skin, Mutat. Res., 423, 11–21 (1999). ( 7) S. J. Moloney, S. H. Edmonds, L. D. Giddens, and D. B. Learn, The hairless mouse model of photoaging: evaluation of the relationship between dermal elastin, collagen, skin thickness and wrinkles, Photochem. Photobiol., 56, 505–511 (1992). ( 8) S. K. Moon, S. K. Kang, and C. H. Kim, Reactive oxygen species mediates disialoganglioside GD3- induced inhibition of ERK1/2 and matrix metalloproteinase-9 expression in vascular smooth muscle cells, FASEB J., 20, 1387–1395 (2006). ( 9) K. K. Nelson and J. A. Melendez, Mitochondrial redox control of matrix metalloproteinases, Free Radic. Biol. Med., 37, 768–784 (2004). ( 10) L. Grange, M. V. Nguyen, B. Lardy, M. Derouazi, Y. Campion, C. Trocme, M. H. Paclet, P. Gaudin, and F. Morel, NAD(P)H oxidase activity of Nox4 in chondrocytes is both inducible and involved in collage- nase expression, Antioxid. Redox. Signal., 8, 1485–1496 (2006). ( 11) M. H. Shin, Y. J. Moon, J. E. Seo, Y. Lee, K. H. Kim, and J. H. Chung, Reactive oxygen species pro- duced by NADPH oxidase, xanthine oxidase, and mitochondrial electron transport system mediate heat shock-induced MMP-1 and MMP-9 expression, Free Radic. Biol. Med., 44, 635–645 (2008). ( 12) J. S. Weiss, C. N. Ellis, J. T. Headington, T. Tincoff, T. A. Hamilton, and J. J. Voorhees, Topical treti- noin improves photoaged skin. A double-blind vehicle-controlled study, JAMA, 259, 527–532 (1988). ( 13) R. Hermitte, Aged skin, retinoids and alpha hydroxy acids, Cosmet. Toilet., 107, 63–67 (1992). ( 14) D. S. Rosenthal, D. R. Roop, C. A. Huff, J. S. Weiss, C. N. Ellis, T. Hamilton, J. J. Voorhees, and S. H. Yuspa, Changes in photo-aged human skin following topical application of all-trans retinoic acid, J. Invest. Dermatol., 95, 510–515 (1990). ( 15) C. M. Ditre, T. D. Griffi n, G. F. Murphy, H. Sueki, B. Telegan, W. C. Johnson, R. J. Yu, and E. J. Van Scott, Effects of alpha-hydroxy acids on photoaged skin: a pilot clinical, histologic, and ultrastructural study, J. Am. Acad. Dermatol., 34, 187–195 (1996). ( 16) A. El-Agamey, G. M. Lowe, D. J. McGarvey, A. Mortensen, D. M. Phillip, T. G. Truscott, and A. J. Young, Carotenoid radical chemistry and antioxidant/pro-oxidant properties, Arch. Biochem. Biophys., 430, 37–48 (2004). ( 17) J. Peng, J. P. Yuan, C. F. Wu, and J. H. Wang, Fucoxanthin, a marine carotenoid present in brown seaweeds and diatoms: metabolism and bioactivities relevant to human health, Mar. Drugs, 9, 1806– 1828 (2011). ( 18) R. Pangestuti and S. K. Kim, Biological activities and health benefi t effects of natural pigments derived from marine algae, J. Funct. Foods, 3, 255–266 (2011). ( 19) C. S. Kumar, P. Ganesan, P. V. Suresh, and N. Bhaskar, Seaweeds as a source of nutritionally benefi cial compounds - a review, J. Food Sci. Technol., 45, 1–13 (2008). ( 20) M. Hosokawa, T. Okada, N. Mikami, I. Konishi, and K. Miyashita, Bio-functions of marine carot- enoids, Food Sci. Biotechnol., 18, 1–11 (2009). ( 21) S. J. Heo, W. J. Yoon, K. N. Kim, G. N. Ahn, S. M. Kang, D. H. Kang, A. Affan, C. Oh, W. K. Jung, and Y. J. Jeon, Evaluation of anti-infl ammatory effect of fucoxanthin isolated from brown algae in lipo- polysaccharide-stimulated RAW 264.7 macrophages, Food Chem. Toxicol., 48, 2045–2051 (2010). ( 22) A. Jiménez-Escrig, I. Jiménez-Jiménez, R. Pulido, and F. Saura-Calixto, Antioxidant activity of fresh and processed edible seaweeds, J. Sci. Food Agric., 81, 530–534 (2001). (23 ) I. Urikura, T. Sugawara, and T. Hirata, Protective effect of fucoxanthin against UVB-induced skin pho- toaging in hairless mice, Biosci. Biotechnol. Biochem., 75, 757–760 (2011). (24 ) N. M. Sachindra, E. Sato, H. Maeda, M. Hosokawa, Y. Niwano, M. Kohno, and K. Miyashita, Radical scavenging and singlet oxygen quenching activity of marine carotenoid fucoxanthin and its metabolites, J. Agric. Food Chem., 55, 8516–8522 (2007). (25 ) F. Beppu, M. Hosokawa, M. J. Yim, T. Shinoda, and K. Miyashita, Down-regulation of hepatic stearoyl- CoA desaturase-1 expression by fucoxanthin via leptin signaling in diabetic/obese KK-A(y) mice, Lip- ids, 48, 449–455 (2013).
JOURNAL OF COSMETIC SCIENCE 64 (26 ) Y. Satomi, Antitumor and cancer-preventative function of fucoxanthin: a marine carotenoid, Anticancer Res., 37, 1557–1562 (2017). (27 ) I. K. Mok, J. R. Yoon, C. H. Pan, and S. M. Kim, Development, quantifi cation, method validation, and stability study of a novel fucoxanthin-fortifi ed milk, J. Agric. Food Chem., 64, 6196–6202 (2016). (28 ) G. J. Fisher, S. C. Datta, H. S. Talwar, Z. Q. Wang, J. Varani, S. Kang, and J. J. Voorhees, Molecular basis of sun-induced premature skin ageing and retinoid antagonism, Nature, 379, 335–339 (1996). (29 ) R. Pallela, Y. Na-Young, and S. K. Kim, Anti-photoaging and photoprotective compounds derived from marine organisms, Mar. Drugs, 8, 1189–1202 (2010). (30 ) M. Manela-Azulay and E. Bagatin, Cosmeceuticals vitamins, Clin. Dermatol., 27, 469–474 (2009). (31 ) Y. Liu, J. Zheng, Y. Zhang, Z. Wang, Y. Yang, M. Bai, and Y. Dai, Fucoxanthin activates apoptosis via inhibition of PI3K/Akt/mTOR pathway and suppresses invasion and migration by restriction of p38- MMP-2/9 pathway in human glioblastoma cells, Neurochem. Res., 41, 2728–2751 (2016). (32 ) S. K. Wang, Y. Li, W. L. White, and J. Lu, Extracts from New Zealand Undaria pinnatifi da containing fucoxanthin as potential functional biomaterials against cancer in vitro, J. Funct. Biomater., 5, 29–42 (2014). (33 ) C. Ishikawa, S. Tafuku, T. Kadekaru, S. Sawada, M. Tomita, T. Okudaira, T. Nakazato, T. Toda, J. N. Uchihara, N. Taira, K. Ohshiro, T. Yasumoto, T. Ohta, and N. Mori, Anti-adult T-cell leukemia effects of brown algae fucoxanthin and its deacetylated product, fucoxanthinol, Int. J. Cancer, 123, 2702–2712 (2008). (34 ) K. Yamamoto, C. Ishikawa, H. Katano, T. Yasumoto, and N. Mori, Fucoxanthin and its deacetylated product, fucoxanthinol, induce apoptosis of primary effusion lymphomas, Cancer Lett., 300, 225–234 (2011). (35 ) F. Beppu, Y. Niwano, T. Tsukui, M. Hosokawa, and K. Miyashita, Single and repeated oral dose toxicity study of fucoxanthin (FX), a marine carotenoid, in mice, J. Toxicol. Sci. 34, 501–510 (2009). (36 ) K. Iio, Y. Okada, and M. Ishikura, [Bacterial reverse mutation test and micronucleus test of fucoxanthin oil from microalgae], Shokuhin Eiseigaku Zasshi, 52, 190–193 (2011). (37) B. A. Booth, K. L. Polak, and J. Uitto, Collagen biosynthesis by human skin fi broblasts. I. Optimiza- tion of the culture conditions for synthesis of type I and type III procollagens, Biochim. Biophys. Acta., 607, 145–160 (1980). (38 ) H. Nagase and J. F. Woessner, Jr., Matrix metalloproteinases, J. Biol. Chem., 274, 21491–21494 (1999). (39 ) K. Scharffetter-Kochanek, P. Brenneisen, J. Wenk, G. Herrmann, W. Ma, L. Kuhr, C. Meewes, and M. Wlaschek, Photoaging of the skin from phenotype to mechanisms, Exp. Gerontol., 35, 307–316 (2000). (40 ) E. I. Deryugina and J. P. Quigley, Matrix metalloproteinases and tumor metastasis, Cancer Metastasis Rev., 25, 9–34 (2006). (41 ) S. R. Kumar, M. Hosokawa, and K. Miyashita, Fucoxanthin: a marine carotenoid exerting anti-cancer effects by affecting multiple mechanisms, Mar. Drugs, 11, 5130–5147 (2013). (42 ) T. W. Chung, H. J. Choi, J. Y. Lee, H. S. Jeong, C. H. Kim, M. Joo, J. Y. Choi, C. W. Han, S. Y. Kim, J. S. Choi, and K. T. Ha, Marine algal fucoxanthin inhibits the metastatic potential of cancer cells, Biochem. Biophys. Res. Commun., 439, 580–585 (2013). (43 ) F. A. Simion, E. S. Abrutyn, and Z. D. Draelos, Ability of moisturizers to reduce dry skin and irritation and to prevent their return, J. Cosmet. Sci., 56, 427–444 (2005). (44 ) M. Guzmán-Alonso and T. M. Cortazár, Water content at different skin depths and the infl uence of moisturizing formulations, Househ. Pers. Care Today, 11, 35–40 (2016). (45) Z . X. Jiang and J. DeLaCruz, Appearance benefi ts of skin moisturization, Skin Res. Technol., 17, 51–55 (2011). (46) S . Verdier-Sévrain and F. Bonté, Skin hydration: a review on its molecular mechanisms, J. Cosmet. Der- matol., 6, 75–82 (2007). (47) C. R. Harding and I. R. Scott, Histidine-rich proteins (fi laggrins): structural and functional heterogene- ity during epidermal differentiation, J. Mol. Biol., 170, 651–673 (1983). (48) A. Sandilands, C. Sutherland, A. D. Irvine, and W. H. McLean, Filaggrin in the frontline: role in skin barrier function and disease, J. Cell. Sci., 122, 1285–1294 (2009). (49) M. Matsui, K. Tanaka, N. Higashiguchi, H. Okawa, Y. Yamada, K. Tanaka, S. Taira, T. Aoyama, M. Takanishi, C. Natsume, Y. Takakura, N. Fujita, T. Hashimoto, and T. Fujita, Protective and therapeutic effects of fucoxanthin against sunburn caused by UV irradiation, J. Pharmacol. Sci., 132, 55–64 (2016).
Previous Page Next Page