BIOSURFACTANTS AND BIOPOLYMERS 475 (13 ) A. Sahota, “Sustainable packaging,” in Sustainability: How the Cosmetics Industry is Greening Up, A. Sahota. Ed. (John Wiley & Sons, London, United Kingdom, 2014). (14 ) C. E. Drakontis and S. Amin, Biosurfactants: formulations, properties, and applications, Curr. Opin. Colloid Interf. Sci. 48, 77–90 (2020). (15) L. Xu and S. Amin, Microrheological study of ternary surfactant-biosurfactant mixture, Int. J. Cosmet. Sci., 41, 364–370 (2019). (16 ) R. Marchant and I. M. Banat, Biosurfactants: a sustainable replacement for chemical surfactants? Biotechnol. Lett., 34(9), 1597–1605 (2012). (17 ) R. Augustine, R. Rajendran, U. Cvelbar, M. Mozetič, and A. George, “Biopolymers for health, food, and cosmetic applications,” in Handbook of Biopolymer-Based Materials, S. Thomas, D. Durand, C. Chassenieux, and P. Jyotishkumar. Eds (Wiley, Weinheim, Germany). (2013), pp. 801–849. (18) N. Kosaric, Biosurfactants and their application for soil bioremediation, Food Technol. Biotechnol, 39, 295–304 (2001). (19) D. F. S. Petri, Xanthan gum: a versatile biopolymer for biomedical and technological applications, J. Appl. Polym. Sci., 132, 42035 (2015). (20) F. Garavand, M. Rouhi, S. Razavi, I. Cacciotti, and R. Mohammadi, Improving the integrity of natu- ral biopolymer fi lms used in food packaging by crosslinking approach: a review, Int. J. Biol. Macromol., 104, 687–707 (2017). (21) P. Ehret, Biodegradable Nonwovens, ITB Nonwovens—Industrial Text., 3, 29–30 (1996). (22) Z. A. Raza, M. S. Khan, Z. M. Khalid, and A. Rehman, Production kinetics and tensioactive charac- teristics of biosurfactant from a Pseudomonas aeruginosa mutant grown on waste frying oils, Biotechnol. Lett., 28, 1623–1631 (2006). (23) Z. A. Raza, A. Rehman, M. S. Khan, and Z. M. Khalid, Improved production of biosurfactant by a Pseudomonas aeruginosa mutant using vegetable oil refi nery wastes, Biodegradation, 18, 115–121 (2007). (24) S. Joshi, C. Bharucha, S. Jha, S. Yadav, A. Nerurkar, and A. J. Desai, Biosurfactant production using molasses and whey under thermophilic conditions, Bioresour. Technol., 99, 195–199 (2007). (25) S. A. Kanga, J. S. Bonner, C. A. Page, M. A. Mills, and R. L. Autenrieth, Solubilization of naphthalene and methyl-substituted naphthalenes from crude oil using biosurfactants, Environ. Sci. Technol., 31(2), 556–561 (1997). (26) W. Kumano, K. Namakoshi, M. Araki, Y. Oda, A. Ueda, and Y. Hirata, Low toxicity and high surface activity of sophorolipids from Starmerella bombicola in aquatic species: a preliminary study, J. Environ. Biol., 40(4), 595–600 (2019). (27) A. N. Yamane, M. Okada, R. Sudo, The growth inhibition of planktonic algae due to surfactants used in washing agents, Water Research, 18(9), 1101–1105, ISSN 0043-1354, (1984). (28) S. Karlsson and A. C. Albertsson, Biodegradable polymers and environmental interaction, Polym. Eng. Sci., 38(8), 1251 (1998). (29) S. B. Khoulenjani, S. M. Taghizadeh, and H. Mirzadeh, An investigation on the short-term biodegrad- ability of chitosan with various molecular weights and degrees of deacetylation, Carbohydr. Polym., 78(4), 773–778 (2009). (30) B. Katzbauer, Properties and applications of xanthan gum, Polym. Degrad. Stab., 59(1–3), 81–84 (1998). (31) C. L. Yuan, Z. Z. Xu, M. X. Fan, H. Y. Liu, Y. H. Xie, and T. Zhu, Study of characteristics and harm of surfactants, J. Chem. Pharm., 6(7), 2233–2237 (2014). (32) O. V. Stepanets, G. Y. Solov’eva, A. M. Mikhailova, and A. I. Kulapin, Rapid determination of anionic surfactants in seawater under shipboard conditions. J. Analy. Chem., 56, 290–293 (2001). (33) S. Vijayakumar and V. Saravanan, Biosurfactants-types, sources and applications, Res. J. Microbiol., 10, 181–192 (2015). (34) K. Munstermann, S. Poremba, and W. F. Lang, Studies on environmental compatibility: infl uence of (bio)surfactants on marine microbial and enzymatic systems, Proceedings of the International Sympo- sium on Soil Decontamination Using Biological Processes, (Karlsruhe, Germany, December 6–9 1992), pp. 414–420. (35) K. M. Pattanath, K. S. Rahman, and E. Gakpe, Production, characterization and applications of bio- surfactants—review, Biotechnology, 7, 360–370 (2008). (36) T. J. P. Smyth, A. Perfumo, S. McClean, R. Marchant, and I. M. Banat, “Isolation and analysis of lipo- peptides and high molecular weight biosurfactants,” in Handbook of Hydrocarbon and Lipid Micro- biology, K. N. Timmis. Ed (Springer-Verlag Berlin Heidelberg). Vol. 5 (2010), pp. 3689–3704. (37) T. J. P. Smyth, A. Perfumo, R. Marchant, and I. M. Banat, “Isolation and analysis of low molecular weight microbial glycolipids,” in Handbook of Hydrocarbon and Lipid Microbiology, K. N. Timmis. Ed (Springer-Verlag Berlin Heidelberg). Vol. 5 (2010), pp. 3705–3723.
JOURNAL OF COSMETIC SCIENCE 476 (38) N. Lourith and M. Kanlayavattanakul, Natural surfactants used in cosmetics: glycolipids, Int. J. Cosmet. Sci., 255–261 (2009). (39) T. T. Nguyen and D. A. Sabatini, Characterization and emulsifi cation properties of rhamnolipid and sophorolipid biosurfactants and their applications, Int. J. Mol. Sci., 12(2), 1232–1244 (2011). (40) A. M. Abdel-Mawgoud, F. Lepine, and E. Deziel, A stereospecifi c pathway diverts beta-oxidation in- termediates to the biosynthesis of rhamnolipid biosurfactants, Chem. Biol., 21, 156–164 (2014). (41) O. Pornsunthorntawee, P. Wongpanit, and R. Rujiravanit, “Rhamnolipid biosurfactants: production and their potential in environmental biotechnology,” in Biosurfactants. Advances in Experimental Medicine and Biology, R. Sen. Ed. (Springer, New York, NY, 2010), pp. 672. (42) A. M. Abdel-Mawgoud, F. Lepine, and E. Deziel, Rhamnolipids: diversity of structures, microbial origins and roles, Appl. Microbiol. Biotechnol., 86, 1323–1336 (2010). (43) E. Déziel, F. Lépine, S. Milot, and R. Villemur, rhlA is required for the production of a novel biosur- factant promoting swarming motility in Pseudomonas aeruginosa: 3-(3-hy droxyalkanoyloxy)alkanoic acids (HAAs), the precursors of rh amnolipids, Microbiology, 149(8), 2005–2013 (2003). ( 44) T. Tiso, R. Zauter, H. Tulke, B. Leuchtle, W.-J. Li, B. Behrens, A. Wittgens, F. Rosenau, H. Hayen, and L. Mathias Blank, Designer rh amnolipids by reduction of congener diversity: production and characterization, Microb. Cell Fact., 16, 225 (2017). ( 45) S. Claus and I. N. Van Bogaert, So phorolipid production by yeasts: a critical review of the literature and suggestions for future research, Appl. Microbiol. Biotechnol., 101, 7811–7821 (2017). ( 46) S. Sen, S. N. Borah, A. Bora, and S. Deka, Production, characterization, and antifungal activity of a biosurfactant produced by Rhodotorula babjevae YS3, Microb. Cell Fact., 16, 95 (2017). ( 47) K. M. Saerens, I. N. Van Bogaert, and W. Soetaert, Characterization of so phorolipid biosynthetic en- zymes from Starmerella bombicola, FEMS Yeast Res., 15, 1–9 (2015). ( 48) K. Ciesielska, S. L. Roelants, I. N. Van Bogaert, S. De Waele, I. Vandenberghe, S. Groeneboer, W. Soetaert, and B. Devreese, Characterization of a novel enzyme Starmerella bombicola lactone esterase (SBLE) responsible for so phorolipid lactonization, Appl. Microbiol. Biotechnol., 100, 9529–9541 (2016). ( 49) Y. Maeng, K. T. Kim, X. Zhou, L. Jin, K. S. Kim, Y. H. Kim, S. Lee, J. H. Park, X. Chen, M. Kong, L. Cai, and X. Li, A novel microbial technique for producing high-quality so phorolipids from horse oil suitable for cosmetic applications, Microb. Biotechnol., 11(5), 917–929 (2018). ( 50) G. L. Maddikeri, P. R. Gogate, and A. B. Pandit, Improved synthesis of so phorolipids from waste cook- ing oil using fed batch approach in the presence of ultrasound, Chem. Eng. Sci., 263, 479–487 (2015). ( 51) A. D. Elbein, Y. T. Pan, I. Pastuszak, and D. Carroll, New insights on trehalose: a multifunctional molecule, Glycobiology, 13(4), 17R–27R (2003). ( 52) J. D. Desai and I. M. Banat, Microbial production of surfactants and their commercial potential, Microbiol. Mol. Biol. Rev., 61(1), 47–64 (1997). ( 53) J.-S. Chang, M. Radosevich, Y. Jin, and D. K. Cha, Enhancement of phenanthrene solubilization and biodegradation by trehalose lipid biosurfactants, Environ. Toxicol. Chem., 23, 2816–2822 (2005). ( 54) A. Mor, Peptide-based antibiotics: a potential answer to raging antimicrobial resistance, Drug Dev. Res., 50, 440–447 (2000). ( 55) A. F. de Faria, D. S. Teodoro-Martinez, G. N. O. Barbosa, B. G. Vaz, I. S. Silva, J. S. Garcia, M. R. Tótola, M. N. Eberlin, M. Grossman, O. L. Alves, and L. R. Durrant, Production and structural characterization of sur factin (C14/Leu7) produced by Bacillus subtilis isolate LSFM-05 grown on raw glycerol from the biodiesel industry, Process Biochem., 46(10), 1951–1957 (2011). ( 5 6) M. D. Shasaltaneh, Z. Moosavi-Nejad, S. Gharavi, and J. Fooladiand, Cane molasses as a source of precur- sors in the bioproduction of tryptophan by Bacillus subtilis, Iran. J. Microbiol., 5(3), 285–292 (2013). ( 5 7) Y.-H. Wei and I.-M. Chu, Mn2 improves sur factin production by Bacillus subtilis, Biotechnol. Lett., 24, 479–482 (2002). ( 5 8) D. K. Santos, R. D. Rufi no, J. M. Luna, V. A. Santos, and L. A. Sarubbo, Biosurfactants: multifunc- tional biomolecules of the 21st century, Int. J. Mol. Sci., 17(3), 401 (2016). ( 5 9) K. Athenstaedt, “Neutral lipids in yeast: synthesis, storage and degradation,” in Handbook of Hydro- carbon and Lipid Microbiology, K. N. Timmis. Ed. (Springer, Berlin, Heidelberg, 2010). ( 6 0) B. Panilaitis, G. Castro, D. Solaiman, and D. Kaplan, Biosynthesis of emu lsan biopolymers from agr o- based feedstocks, J. Appl. Microbiol., 102, 531–537 (2007). ( 6 1) H. Dams-Kozlowska and L. K. David, Protein engineering of wzc to generate new emu lsan analogs, Appl. Environ. Microbiol., 73(12), 4020–4028 (2007). ( 6 2) W.-T. Su, W.-J. Chen, and Y. F. Lin, Optimizing emu lsan production of A. venetianus RAG-1 using response surface methodology, Appl. Microbiol. Biotechnol., 84, 271–279 (2009).
Previous Page Next Page