BIOSURFACTANTS AND BIOPOLYMERS 479 (116) B. M. Lopes, V. L. Le s sa, B. M. Silva, M. A. S. C. Filho, E. Schnitzler, and L. G. Lacerda, Xanthan gum: prop- erties, prod uction conditions, quality and economic perspective, J. Food Nutr. Res., 54(3), 185–194 (2015). (117) A. Woiciechowski, C. S occol, S. Rocha, and A. Pandey, Xanthan gum production from c assava bagasse hydrolysate with Xanthomonas campestris using alternative sou rces of nitrogen, Appl. Biochem. Biotech- nol., 118, 305–312 (2004). (118) S. Rosalam and R. Eng l and, Review of xanthan gum production from unmodifi ed starches by Xan- thomonas camprestris sp., Enzym. Micro b. Technol., 39, 197–207 (2006). (119) T. B. R. Nery, A. J. G . Cruz, and J. I. Druzian, Use of green coconut shells as an alternative substrate for the production of xanthan gum on different scales of fermentation, Polímeros, 23, 602–607 (2013). (120) H. A. Ambjörnsson, K. S chenzel, and U. Germgård, Carboxymethyl cellulose produced at different mercerization conditions and characterized by NIR FT Raman spectroscopy in combination with multivariate analytical methods, BioResources, 8(2), 1918–1932. (2013). doi:10.15376/biores.8.2. (121) C. Huang, P. Chia, C. Li m , Q. Nai, D. Ding, P. Seow, C. W. Wong, and E. Chan, Synthesis and char- acterisation of carboxymethyl cellulose from various agricultural wastes, Cellul. Chem. Technol., 51, 665–672 (2015). (122) H. Toğrul and N. Arslan, Production of carboxymethyl cellulose from sugar beet pulp cellulose and rheological behaviour of carboxymethyl cellulose, Carbohydr. Polym., 54(1), 73–82 (2003). ( 123) C. Juliano and G. Magrini, Cosmetic ingredients as emerging pollutants of environmental and health concern. A mini-review, Cosmetics 4(2), 11 (2017). ( 124) M. A. Browne, T. Galloway, and R. Thompson, Microplastics—an emerging contaminant of potential concern? Integrated Environ. Assess. Manag., 3, 559–561 (2009). ( 125) M. S. Díaz-Cruz, M. J. G. Galán, P. Guerra, A. Jelic, C. Postigo, E. Eljarrat, M. Farré, M. J. L. Alda, M. Petrovic, and D. Barceló, Analysis of selected emerging contaminants in sewage sludge, Trends Anal. Chem., 28, 1263–1275 (2009). (126 ) A. Albertsson, C. Barenstedt, and S. Karlsson, Increased biodegradation of a low-density polyethylene (LDPE) matrix in starch-fi lled LDPE materials, J. Environ. Polym. Degrad., 1(4), 241–245 (1993). (127 ) P. B. Moore, K. Langley, P. J. Wilde, A. Fillery-Travis, and D. J. Mela, Effect of emulsifi er type on sensory properties of oil-in-water emulsions, J. Sci. Food Agric., 76, 469–476 (1998). (128 ) M. Fathi, M. R. Mozafari, and M. Mohebbi, Nanoencapsulation of food ingredients using lipid based delivery systems, Trends Food Sci. Technol., 23, 13–27 (2012). (129 ) D. J. McClements, Emulsion design to improve the delivery of functional lipophilic components, Annu Rev. Food Sci. Technol., 1, 241–269 (2010). (13 0) I. Capek, Degradation of kinetically-stable o/w emulsions, Adv. Colloid Interf. Sci., 107, 125–155 (2004). (131 ) L. A. Felton, Mechanisms of polymeric fi lm formation, Int. J. Pharm., 457(2), 423–427 (2013). (132 ) M. Sapper, P. Talens, and A. Chiralt, Improving functional properties of cassava starch-based fi lms by incorporating xanthan, gellan, or pullulan gums, Int. J. Polym. Sci., 2019, 1–8 (2019). (133) N. El Miri, K. Abdelo uahdi, A. Barakat, M. Zahouily, A. Fihri, A. Solhy, M. El Achaby , Bio-nanocom- posite fi lms reinforced with cellulose nanocrystals: rheology of fi lm-forming solutions, transparency, water vapor barrier and tensile properties of fi lms, Carbohydr. Polym., 129, 156–167 (2015). (134 ) W. Thakhiew, M. Champahom, S. Devahastin, and S. Soponronnarit, Improvement of mechanical properties of chitosan-based fi lms via physical treatment of fi lm-forming solution, J. Food Eng., 158, 66–72 (2015). (135 ) H. K. S. Souza, J. M. Campiña, A. M. M. Sousa, F. Silva, and M. P. Gonçalves, Ultrasound-assisted preparation of size-controlled chitosan nanoparticles: characterization and fabrication of transparent biofi lms, Food Hydrocoll., 31, 227–236 (2013). (136) A. Sionkowska, B. Kaczmarek, M. Michalska, K. Lewandowska, and S. Grabska, Preparation and characterization of collagen/chitosan/hyaluronic acid thin fi lms for application in hair care cosmetics, Pure Appl. Chem., 89(12), 1829–1839 (2017). (137) S. Miranda, O. Garnica, A. V. L. Sagahon, and G. Cardenas, Water vapor permeability and mechanical properties of chitosan fi lms, J. Chil. Chem. Soc., 49, 173–178 (2004). (138) S. Damodaran, P rotein stabilization of emulsions and foams, J. Food Sci., 70(3), R54–R66 (2005). (139) E. Dickinson, H ydrocolloids at interfaces and the infl uence on the properties of dispersed systems, Food Hydrocoll., 17(1), 25–39 (2003). (140) J. Desbrieres a nd V. Babak, Interfacial properties of chitin and chitosan based systems, Soft Matt., 6, 2358–2363 (2010). (141) V. Krstonošić, L . Dokić, I. Nikolić, and M. Milanović, Infl uence of xanthan gum on oil-in-water emul- sion characteristics stabilized by OSA starch, Food Hydrocoll., 45, 9–17 (2015)
JOURNAL OF COSMETIC SCIENCE 480 (142) G. Soberón-Chávez an d R. M. Maier, “Biosurfactants: a general overview,” in Biosurfactants, G. Soberón- Chávez. Ed. (Springer-Verlag, Berlin, Germany, 2011), pp. 1–11. (143) L. M. Whang, P. W. G. Li u , C. C. Ma, and S. S. Cheng, Application of biosurfactant, rhamnolipid, and surfactin, for enhanced biodegra dation of diesel-contaminated water and soil, J. Hazard. Matter, 151, 155–163 (2008). (144) Y. Zhou, S. Harne, and S . Amin, Optimization of the surface activity of biosurfactant–surfactant mix- tures, Int. J. Cosmet. Sci., 70, 127–136 (2019). (145) M. Kanlayavattanakul and N. Lourith, Lipopeptides in cosmetics, Int. J. Cosmet. Sci., 32, 1–8 (2009). (146) R. M. Miller and Y. Zhan g , Measurement of biosurfactant-enhanced solubilization and biodegradation of hydrocarbons, Methods Biotechnol., 2, 59–66 (1997). (147) R. N. Glenns and D. G. C o oper, Effect of substrate on sophorolipid properties, J. Am. Oil Chem. Soc., 83, 137–145 (2006). (148) E. Rosenberg and E. Z. R o n, High- and low-molecular-mass microbial surfactants, Appl. Microbiol. Biotechnol., 52, 154–162 (1999). (149) O. Bouffi oux, A. Berqand , M. Eeman, M. Paquotb, Y. F. Dufrênec, R. Brasseur, and M. Deleub, Mo- lecular organization of surfactin-phospholipid monolayers : effect of phospholipids chain length and polar head, Biochim. Biophys. Acta, 1768, 1758–1768 (2007). (150) K. Das and A. K. Mukherje e , Characterization of biochemical properties and biological activities of biosurfactants produced by Pseudomonas aeruginosa mucoid and non-mucoid strains isolated from hy- drocarbon contaminated soil samples, Appl. Microbiol. Biotechnol., 69, 192–199 (2005). (151) A. S. Monteiro, M. R. Q. B onfi m, V. S. Domingues, A. Corrêa, E. P. Siqueira, C. L. Zani, and V. L. Santos, Identifi cation and characterization of bioemulsifi er-producing yeasts isolated from effl uents of a dairy industry, Bioresour. Technol., 101(14), 5186–5193 (2010). (152) C. Calvo, M. Manzanera, G. A. Silva-Castro, I. Uad, and J. González-López, Application of bioemulsifi ers in soil oil bioremediation processes. Future prospects, Sci. Total Environ., 407(12), 3634–3640 (2009). (153) R. Chen and R. Heh, Skin hyd r ation effects, physico-chemical properties and vita min E release ratio of vital moisture creams containing water-soluble chitosans, Int. J. Cosmet. Sci., 22(5), 349–360 (2000). (154) J. S. Casas, V. E. Santos, a n d F. García-Ochoa, Xanthan gum production under several operational conditions: molecular structure and rheological properties, Enzym. Microb. Technol., 26, 2–4 (2000). (155) A. Benchabane and K. Bekkour, Rheological p roperties of carboxymethyl cellulose (CMC) solutions, Colloid Polym. Sci., 286(10), 1173–1180 (2008). (156) J. Hwang and H. H. Shin, Rheological prope r ties of chitosan solutions, Korea Aust. Rheol. J., 12(3) 175–179, (2000). (157) Y. M. Dong, W. B. Qiu, Y. H. Ruan, Y. S. Wu , M. A. Wang, and C. Y. Xu, Infl uence of molecular weight on critical concentration of chitosan/formic acid liquid crystalline solution, Polym. J., 33, 387– 389 (2001). (158) J. Desbrieres, Viscosity of semifl exible c h itosan solutions: infl uence of concentration, temperature, and role of intermolecular interactions, Biomacromol, 3, 342–349 (2002). (159) E. Turkoz, A. Perazzo, C. Arnold, and H. S t one, Salt type and concentration affect the viscoelasticity of polyelectrolyte solutions, Appl. Phys. Lett., 112(20), 203701 (2018). (160) L. Xu, G. Xu, T. Liu, Y. Chen, and H. Gong , The comparison of rheological properties of aqueous welan gum and xanthan gum solutions, Carbohydr. Po lym., 92(1), 516–522 (2013). (161) M. Edali, M. N. Esmail, and G. H. Vatistas , Rheological properties of high concentrations of carboxy- methyl cellulose solutions, J. Appl. Polym. Sci., 9(10), 1787–1801 (2001). (162) C. F. Mao and J. C. Chen, Interchain assoc i ation of locust bean gum in sucrose solutions: an interpreta- tion based on thixotropic behavior, Food Hydrocoll, 20, 730–739 (2006). (163) H. Abbasi, M. M. Hamedi, T. B. Lotfabad, H . S. Zahiri, H. Sharafi , F. Masoomi, A. A. Moosavi- Movahedi, A. Ortiz, M. Amanlou, and K. A. Noghabi, Biosurfactant-producing bacterium, Pseudomonas aeruginosa MA01 isolated from spoiled apples: physicochemical and structural characteristics of iso- lated biosurfactant, J. Biosci. Bioeng., 113(2), 211–219 (2012). (164) R. M. Jain, K. Mody, A. Mishra, and B. Jha , Isolation and structural characterization of biosurfactant produced by an alkaliphilic bacterium Cronobacter sakazakii isolated from oil contaminated wastewater, Carbohydr. Polym., 87(3), 2320–2326 (2012). (165) F. Martinez-Checa, F. L. Toledo, K. El Mab r ouki, E. Quesada, and C. Calvo, Characteristics of bioemul- sifi er V2-7 synthesized in culture media added of hydrocarbons: chemical composition, emulsifying activity and rheological properties, Bioresour. Technol., 98(16), 3130–3135 (2007).
Previous Page Next Page