BIOSURFACTANTS AND BIOPOLYMERS 477 ( 6 3) S. Chakrabarti, Bacterial biosurfactant: characterization, antimicrobial, and metal remediation proper- ties (Ph.D. Thesis, National Institute of technology, Surat, India, 2012). ( 6 4) M. C. Cirigliano and G. M. Carman, Purifi cation and characterization of liposan, a bioemulsifi er from Candida lipolytica, Appl. Environ. Microbiol., 50(4), 846–850 (1985). ( 6 5) R. D. Rufi no, J. M. Luna, G. M. C. Takaki, and L. A. Sarubbo, Characterization and properties of the biosurfactant produced by Candida lipolytica UCP 0988, Electron. J. Biotechnol., 17(1), 34–38 (2014). ( 6 6) L. A. Sarubbo, C. B. B. Farias, and G. M. C. Takaki, Co-utilization of canola oil and glucose on the production of a surfactant by Candida lipolytica, Curr. Microbiol., 50, 68–73 (2007). ( 6 7) R. D. Rufi no, L. A. Sarubbo, and G. M. C. Takaki, Enhancement of stability of biosurfactant produced by Candida lipolytica using industrial residue as substrate, World J. Microbiol. Biotechnol., 23, 729–734 (2007). ( 6 8) E. A. Johnson and C. E. Erasun, “Yeast biotechnology,” in The Yeasts, C. P. Kurtzman and J. W. Fell, and T. Boekhout. Eds. 5th Ed. (Elsevier, Amsterdam 2011). (6 9) A. Caridi, Enological functions of parietal yeast mannoproteins, Antonie Leeuwenhoek., 89, 417–422 (2006). ( 7 0) D. R. Cameron, D. G. Cooper, and R. J. Neufeld, The man noprotein of Saccharomyces cerevisiae is an effective bioemulsifi er, Appl. Environ. Microbiol., 54(6), 1420–1425 (1988). ( 7 1) Y. Guérardel, E. Maes, E. Elass, Y. Leroy, P. Timmerman, G. Besra, C. Locht, G. Strecker, and L. Kremer, Structural study of lipo mannan and lipoarabinomannan from Mycobacterium chelonae: presence of unusual components with α1,3-mannopyranose side chains, J. Biol. Chem., 277, 30635–30648 (2002). (72) A. Toren, O. Elisha, P. Yossi, R. Z. Eliora, and R. Eugene, The active component of the bioemulsifi er alasan from acinetobacter radioresistens KA53 is an OmpA-like protein, J. Bacteriol., 184(1), 165–170 (2002). (73) C. Uzoigwe, J. G. Burgess, C. J. Ennis, and P. K. S. M. Rahman, Bioemulsifi ers are not biosurfactants and require different screening approaches, Front. Microbiol., 6, 245 (2015). (74) K. Urum and T. Pekdemir, Evaluation of biosurfactants for crude oil contaminated soil washing, Che- mosphere., 57(9), 1139–1150 (2004). (75) M. L. Nievas, M. G. Commendatore, J. L. Esteves, and V. J. Bucalá, Biodegradation pattern of hydro- carbons from a fuel oil-type complex residue by an emulsifi er-producing microbial consortium, Haz- ard. Mater, 154(1–3), 96–104 (2008). (76) K . S. M. Rahman, T. J. Rahman, P. Lakshmanaperumalsamy, R. Marchant, and I. M. Banat, The poten- tial of bacterial isolates for emulsifi cation with range of hydrocarbons, Acta Biotechnol, 4, 335–345 (2003). (77) S . S. Cameotra and P. Singh, Synthesis of rhamnolipid biosurfactant and mode of hexadecane uptake by Pseudomonas species, Microb. Cell Fact. 8, 16 (2009). (78) A . Franzetti, I. Gandolfi , G. Bestetti, T. Smyth, and I. Banat, Production and application of trehalose lipid biosurfactants, Eur. J. Lipid Sci. Technol., 112, 617–627 (2010). (79) F . Babaei and A. Habibi, Fast biodegradation of diesel hydrocarbons at high concentration by the sophoro- lipid-producing yeast Candida catenulata KP324968. J. Mol. Microbiol. Biotechnol., 28, 240–254 (2018). (80) P . K. Mohan, G. Nakhla, and E. K. Yanful, Biokinetics of biodegradation of surfactants under aerobic, anoxic and anaerobic conditions, Water Res., 40, 533–540 (2006). (81) A . Vinod, M. R. Sanjay, S. Siengchin, and J. Parameswaranpillai, Renewable and sustainable biobased materials: an assessment on biofi bers, biofi lms, biopolymers and biocomposites, J. Clean. Prod., 258, 120978 (2020). (82) S . Hirano, K. Hirochi, K. Hayashi, T. Mikami, and H. Tachibana, “Cosmetic and pharmaceutical uses of chitin and chitosan,” in Cosmetic and Pharmaceutical Applications of Polymers, C. G. Gebelein, T. C. Cheng, and V. C. Yang. Eds. (Springer, Boston, MA, 1991). (83) R . Augustine, R. Rajendran, U. Cvelbar, M. Mozetic, and A. George, “Biopolymers for health, food, and cosmetic applications,” in Handbook of Biopolymer-Based Materials: FromBlends and Compos- ites to Gels and Complex Networks, T. Sabu, D. Dominique, C. Christophe, and P. Jyotishkumar. Eds. (Wiley-VCH Verlag GmbH & Co, KGaA, Hoboken, NJ, 2013). (84) W . Sabra and A.-P. Zeng, “Microbial production of alginates: physiology and process aspects,” in Alginates: Biology and Applications, B. H. A. Rehm. Eds. (Springer-Verlag, Berlin, Genmany, 2009), pp. 153–173. (85) K . Song, Y. Kim, and G. Chang, Rheology of concentrated xanthan gum solutions: steady shear fl ow behavior, Fibers Polym., 7, 129–138 (2006). (86) R . Vinayagamoorthy and G. Venkatakoteswararao, Synthesis and property analysis of green resin- based composites, J. Thermoplast. Compos. Mater., 33(10), 1429–1455 (2019). (87) M . G. Rao, P. Bharathi, and R. M. Akila, A comprehensive review on biopolymers, Sci. Revs. Chem. Commun., 4(2), 61–68 (2014). (88) I. Younes and M. Rinaudo, Chitin and chitosan preparation from marine sources. Structure, properties and applications, Mar. Drugs, 13, 1133–1174 (2015).
JOURNAL OF COSMETIC SCIENCE 478 (89) S. Islam, M. Bhuiyan, and M. Islam, Chitin and chitosan: structure, properties and applications in biomedical engineering, J. Polym. Environ., 25, 854–866 (2016). (90) I. Aranaz, M. Mengibar, R. Harris, I. Panos, B. Miralles, N. Acosta, G. Galed, and A. Heras, Func- tional characterization of chitin and chitosan, Curr. Chem. Biol., 3, 203 (2009). (91) K. Keisuke, Chemistry and application of chitin and chitosan, Polym. Degrad. Stabil., 59, 1–3 (1998). (92) T. O. D. Pazo, L. T. Antelo, A. Franco-Uría, R. I. Pérez-Martín, C. G. Sotelo, and A. A. Alonso, Fish discards management in selected Spanish and Portuguese métiers: identifi cation and potential valori- sation, Trends Food Sci. Technol., 36, 29–43 (2014). (93) V. L. P achapur, K. Guemiza, T. Rouissi, S. J. Sarma, and S. K. Brar, Novel biological and chemical methods of chitin extraction from crustacean waste using saline water, J. Chem. Technol. Biotechnol., 91, 2331–2339 (2016). (94) A. Perc ot, C. Viton, and A. Domard, Optimization of chitin extraction from shrimp shells, Biomacro- molecules, 4(1), 12–18 (2003). (95) H. D. D e Holanda and F. M. Netto, Recovery of components from shrimp (Xiphopenaeus kroyeri) pro- cessing waste by enzymatic hydrolysis, J. Food Sci., 71, C298–C303 (2006). (96) T. S. T rung and W. F. Stevens, “Extraction of nutraceuticals from shrimp by-products,” in Marine Nutraceuti- cals: Prospects, and Perspectives, S. K. Kim. Eds. (CRC Press, Kandererstrasse, Basel, Switzerland 2013). (97) M. Fou c hereau-Peron, L. Duvail, C. Michel, A. Gildberg, I. Batista, and Y. Legal, Isolation of an acid fraction from fi sh protein hydrolysate with a calcitonin-gene-related-peptide-like biological activity, Biotechnol. Appl. Biochem., 29, 87–92 (1999). (98) A. Gil d berg and E. Stenberg, A new process for advanced utilisation of shrimp waste, Process Biochem., 36(8), 809–812 (2001). (99) M. S. R ao and W. F. Stevens, Chitin production by Lactobacillus fermentation of shrimp biowaste in a drum reactor and its chemical conversion to chitosan, J. Chem. Technol. Biotechnol., 80, 1080–1087 (2005). (100) S. Du a n, L. Li, Z. Zhuang, W. Wu, S. Hong, and J. Zhou, Improved production of chitin from shrimp waste by fermentation with epiphytic lactic acid bacteria, Carbohydr. Polym., 89, 1283–1288 (2012). (101) H. Sa w ssen, Y. Islem, G. B. Olfa, H. Rachid, R. Marguerite, N. Moncef, and J. Kemel, Structural dif- ferences between chitin and chitosan extracted from three different marine sources, Int. J. Biol. Macro- mol., 65, 298–306 (2014). (102) S. Pa u l, A. Jayan, C. S. Sasikumar, and S. Cherian, Extraction and purifi cation of chitosan from chitin isolated from sea prawn (Fenneropenaeus indicus), Asian J Pharm Clin Res., 7, 201–204 (2014). (103) C. Pe t eiro, “Alginate production from marine macroalgae, with emphasis on kelp farming,” in Algi- nates and Their Biomedical Applications, B. H. A. Rehm and F. Moradali. Eds. (Springer, Singapore, Singapore, 2018). (104) N. Ar u mugam, A. Shanmugam, and Z. Aslam, Mini review on alginate: scope and future perspectives, J. Algal Biomass Utln., 7(1), 45–55 (2016). (105) A. R. Nesic and S. I. Seslija, “The infl uence of nanofi llers on physical–chemical properties of polysac- charide-based fi lm intended for food packaging,” in Food Packaging, A. M. Grumezescu. Eds. (Aca- demic Press, 2017), pp. 637–697. (106) P. A. Gorin and F. F. T. Spencer, Exocellular alginic acid from Azotobacter vinelandii, Can. J. Chem., 44, 993–998 (1966). (107) A. a z-Barrera, P. Silva, J. Berrios, and F. Acevedo, Manipulating the molecular weight of alginate produced by Azotobacter vinelandii in continuous cultures, Bioresour. Technol., 101(23), 9405–9408 (2010). (108) B. L. R idley, M. A. O’Neill, and D. Mohnen, Pectins: structure, biosynthesis, and oligogalacturo nide- related signaling, Phytochemistry, 57(6), 929–967 (2007). (109) D. Moh n en, Pectin structure and biosynthesis, Curr. Opin. Plant Biol., 11(3), 266–277 (2008). (110) M. Pag l iaro, R. Ciriminna, A. Fidalgo, R. Delisi, and L. Ilharco, Pectin production and global market, Agro Food Ind Hi Tec., 27(5), 17–20 (2016). (111) L. R. A detunji, A. Adekunle, V. Orsat, and V. Raghavan, Advances in the pectin production process using novel extraction techniques: a review, Food Hydrocoll., 62, 239–250 (2017). (112) M. Pur i , D. Sharma, and C. J. Barrow, Enzyme-assisted extraction of bioactives from plants, Trends Biotechnol. 30(1), 37–44 (2012). (113) S. M. Z akaria and S. M. M. Kamal, Subcritical water extraction of bioactive compounds from plants and algae: applications in pharmaceutical and food ingredients, Food Eng. Rev. 8(1), 23–34 (2015). (114) J. L. L u que-García and M. D. L. Castro, Ultrasound: a powerful tool for leaching, Trac. Trends Anal. Chem., 22(1), 41–47 (2003). (115) A. Laws, Y. Gu, and V . Marshall, Biosynthesis, characterization, and design of bacterial exopolysac- charides from lactic acid bacteria, Biotechnol. Adv., 19, 597–625 (2001).
Previous Page Next Page