In addition these particles, because of their crystallinity, can scatter/refl ect incoming UV radiation, increasing the sun protection factor. A be nefi cial characteristic of NPSUNs is their high skin substantivity which could min- imize the need for repetitive applications. Such a characteristic, along with the factor of non-penetrability, makes NPSUNs highly applicable. More over, incorporation in LMs of combination of sunscreen substances is signifi cantly effective in enhancing the UVA fi lter photostability. SBA- 15, an innovative mesoporous material, increased photoprotection by UV fi lters while reducing their cutaneous penetration and transdermal permeation. Mesoporous silica materials of type SBA-15 are nontoxic and biocompatible, and the presence of an ordered pore network with homogeneous pore size enables a good and reproducible con- trol of drug loading and a benefi cial release profi le. Furthermore, the high pore volume and large surface area facilitate drug loading and drug adsorption. Cons equently, a development of formulas based on non-penetrating photo protectors is considered to be more than relevant. This explains why the biggest challenge cosmetolo- gists face is the development of appropriate products that could hinder skin penetration. ACKN OWLEDGMENTS This article is a literature review completed in the frame of research undertaken in Labo- ratory of Chemistry-Biochemistry-Cosmetic Science, Division of Aesthetics and Cosmetic Science, Department of Biomedical Sciences, the University of West Attica (Egaleo, Greece), supported by an Academic Scholarship. Assistance with useful data and con- structive recommendations was provided by colleagues of the Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodis- trian University of Athens. DECL A RATION OF INTEREST The authors have no declaration of interest. The authors alone are responsible for the content and writing of the manuscript. REFE RENCES (1) P . Pavlou, M. Rallis, G. Deliconstantinos, G. Papaioannou, and S. Grando, In-vivo data on the infl u- ence of tobacco smoke and UV light on murine skin, Toxicol. Ind. Health, 25(5), 231–239 (2009). (2) M . Schlumpf, P. Schmid, S. Durrer, M. Conscience, K. Maerkel, M. Henseler, M. Gruetter, I. Herzog, S. Reolon, R. Ceccatelli, O. Faass, E. Stutz, H. Jarry, W. Wuttke, and W. Lichtensteiger, Endocrine activity and developmental toxicity of cosmetic UV fi lters - an update, Toxicology, 205(1-2), 113–122 (2004). (3) S . T. Butt and T. Christensen, Toxicity and phototoxicity of chemical sun fi lters. Radiat. Prot. Dosimet., 91(1-3), 283–286 (2009). (4) K . M. Hanson, E. Gratton, and C. J. Bardeen, Sunscreen enhancement of UV-induced reactive oxygen species in the skin. Free Radic. Biol. Med., 41(8), 1205–1212 (2006). (5) J . F. Nash and P. R. Tanner, Relevance of UV fi lter/sunscreen product photostability to human safety. Photodermatol. Photoimmunol. Photomed., 30, 88–95 (2014). (6) J . V. Freitas, N. P. Lopes, and L. R. Gaspar, Photostability evaluation of fi ve UV-fi lters, trans-resveratrol and beta-carotene in sunscreens, Eur. J. Pharm. Sci., 78, 79–89 (2015). JOURNAL OF COSMETIC SCIENCE 320
(7) E uropean Parliament and Council, Regulation (EC) No. 1223/2009 of the European. Parliament and of the Council of 30 November 2009 on Cosmetic Products (Offi cial Journal of the European Union L342/59, 2009), n:PDF. (8) h ttps:// (9) H . Gonzalez, A. Farbrot, O. Larkö, and A. M. Wennberg, Percutaneous absorption of the sunscreen benzophenone-3 after repeated whole-body applications, with and without ultraviolet irradiation. Br. J. Dermatol., 154, 337–340 (2006). (10) Y. A. G o maa, L. K. El-Khordagui, N. A. Boraei, and I. A. Darwish, Chitosan microparticles incorporat- ing a hydrophilic sunscreen agent. Carbohydr. Polym., 81, 234–242 (2010). (11) D. Gogna, S. K. Jain, A. K. Yadav, and G. P. Agrawal, Microsphere-based improved sunscreen formula- tion of ethylhexyl methoxycinnamate, Curr. Drug Deliv., 4, 153–159 (2007). (12) I. Hanno, C . Anselmi, and K. Bouchemal, Polyamide nanocapsules and nano-emulsion containing par- sol mcx and parsol 1789, in vitro release, ex vivo skin penetration and photo-stability studies, Pharm. Res. (N. Y.)., 29, 559–573 (2012). (13) V. Weiss-Angel , S. Bourgeois, J. Pelletier, S. Stanisçuaski Guterres, H. Fess, and M. A. Bolzinger, De- velopment of an original method to study drug release from polymeric nanocapsules in the skin, J. Pharm. Pharmacol., 62, 35–45 (2010). (14) B. Albertini, M. Mezzena, N. Pas s erini, L. Rodriguez, and S. Scalia, Evaluation of spray congealing as a technique for the preparation of highly loaded solid lipid microparticles containing the sunscreen agent avobenzone. J. Pharmacol. Sci., 98, 2759–2769 (2009). (15) S. Nikolic, C. M. Keck, C. Ansel m i, and R. H. Muller, Skin photoprotection improvement, synergistic interaction between lipid nanoparticles and organic uv fi lters. Int. J. Pharm., 414, 276–328 (2011). (16) S. Scalia and M. Mezzena, Incorp o ration in lipid microparticles of the uva fi lter, butyl methoxydibenzo- ylmethane combined with the UVB fi lter, octocrylene, effect on photostability. AAPS Pharm. SciTech., 10, 384–390 (2009). (17) L. Perioli, V. Ambrogi, B. Berti n i, M. Ricci, M. Nocchetti, L. Latterini, and C. Rossi, Anionic clays for sunscreen agent safe use, photoprotection, photostability and prevention of their skin penetration. Eur. J. Pharm. Biopharm., 62, 185–193 (2006). (18) S. Scalia, R. Tursilli, and V. Ia n nuccelli, Complexation of the sunscreen agent, 4-methylbenzylidene camphor with cyclodextrins, effect on photostability and human stratum corneum penetration, J. Phar- maceut. Biomed. Anal., 44, 29–34 (2007). (19) C. Anselmi, M. Centini, M. Maggiore , N. Gaggelli, M. Andreassi, A. Buonocore, G. Beretta, and R. M. Facino, Non-covalent inclusion of ferulic acid with α-cyclodextrin improves photo-stability and deliv- ery, NMR and modeling studies, J. Pharmaceut. Biomed. Anal., 46, 645–652 (2008). (20) S. Simeoni, S. Scalia, and H. A. E. Benson, Infl uence of cyclodextrins on in vit r o human skin absorption of the sunscreen butyl-methoxydibenzoylmethane, Int. J. Pharm., 280, 163–171 (2004). (21) G. L. Negve Coelho, C. Braga Domelas, K. C. Costa Soares, E. P. dos Santos, A. L. V ergnanini, T. C. dos Santos, C. R. Rodrigues, H. C. Castro, L. R S. Dias, and L. M. Cabral, Preparation and evaluation of inclusion complexes of commercial sunscreens in cyclodextrins and montmorillonites, performance and substantivity studies, Drug Dev. Ind. Pharm., 34, 536–546 (2008). (22) S. Coutinho Cdos, E. P. Dos Santos, and C. R. Mansur, Nanosystems in photoprotecti o n, J. Nanosci. Nanotechnol., 15, 9679–9688 (2015). (23) G. Fytianos, A. Rahdar, and G. Z. Kyzas, Nanomaterials in cosmetics: recent update s , Nanomaterials (Basel), 10, 979 (2020). (24) Q. Li, T. Cai, Y. Huang, X. Xia, S. P. C. Cole, and Y. Cai, A review of the struct u re, preparation, and application of NLCS, PNPS and PLNS, Nanomaterials (Basel), 7, 122 (2017). (25) I. Chauhan, M. Yasir, M. Verma, and A. P. Singh, Nanostructured lipid carriers, a g roundbreaking ap- proach for transdermal drug delivery, Adv Pharm Bull, 10, 150–165 (2020). (26) K. W. Kim, K. S. Kim, H. Kim, S. H. Lee, J. H. Park, J. H. Han, S. H. Seok, J. Par k , Y. Choi, Y. I. Kim, J. K. Han, and J. H. Son, Terahertz dynamic imaging of skin drug absorption, Opt. Expr., 20(9), 9476–9484 (2012). (27) A. Varvaresou, Percutaneous absorption of organic sunscreens, J. Cosmet. Dermatol. , 5, 53–57 (2006). (28) M. Munem, A. Djuphammar, L. Sjölander,L. Hagvall, and P. Malmberg, Animal- free sk i n permeation analysis using mass spectrometry imaging, Toxicol. Vitro, 71, 105062 (2021). (29) M. Schlumpf and W. Lichtensteiger, Endocrine-active ultraviolet fi lters and cosmetics, Endo c r. Disrupt. Chem. Food, Ian Shaw, Ed., Woodhead Publishing Ltd., Cambridge, UK, 519–540 (2009). DISTRIBUTION OF UV FILTERS ON THE SKIN 321
Previous Page Next Page