597 SUPPRESSION OF ITCHING BY THREE HERBAL ETHANOLIC EXTRACTS but has a modest effect on gene expression regardless of FLG genotype, J. Eur. Acad. Dermatol. Venereol., 29(1), 174–177 (2015). (9) J. Hong, J. Buddenkotte, T. G. Berger, and M. Steinhoff, Management of itch in atopic dermatitis, Semin. Cutan. Med. Surg., 30(2), 71–86 (2011). (10) L. S. Joshi and H. A. Pawar, Herbal cosmetics and cosmeceuticals: an overview, El Med. J., 3(1), 170 (2015). (11) S. K. Gediya, R. B. Mistry, U. K. Patel, M. Blessy, and H. N. Jain, Herbal plants: used as a cosmetics, J. N. Atl. Prod. Plant Resour., 1, 24–32 (2011). (12) H. Wiedenfeld and A. Andrade-Cetto, Pyrrolizidine alkaloids from ageratum houstonianum mill, Phytochemistry, 57(8), 1269–1271 (2001). (13) B. Singh and J. Singh, Ethnobotanical uses of some plants from central Haryana, India, Phytodiversity, 1, 7–24 (2014). (14) N. P. Kurade, V. Jaitak, V. K. Kaul, and O. P. Sharma, Chemical composition and antibacterial activity of essential oils of lantana camara, ageratum houstonianum and eupatorium adenophorum, Pharm. Biol., 48(5), 539–544 (2010). (15) D. K. Pandey, H. Chandra, N. N. Tripathi, and S. N. Dixit, Mycotoxicity in leaves of some higher plants with special reference to that of ageratum houstonianum mill, Mykosen, 26(11), 565–573 (1983). (16) C. Menut, G. Lamaty, P. H. A. Zollo, J. R. Kuiate, and J. M. Bessière, Aromatic plants of tropical central Africa. Part X Chemical composition of the essential oils of ageratum houstonianum Mill and ageratum conyzoides L. from Cameroon, Flavour Fragr. J., 8(1), 1–4 (1993). (17) N. Kumar, Biological potential of a weed ageratum houstonianum mill: a review, Indo Am. J. Pharm. Res., 4, 2683–2689 (2014). (18) R. Sougrat, M. Morand, C. Gondran, P. Barré, R. Gobin, F. Bonté, M. Dumas, J. M. Verbavatz, Functional expression of AQP3 in human skin epidermis and reconstructed epidermis, J. Invest. Dermatol., 118(4), 678–685 (2002). (19) S. Y. Shin, D. H. Lee, H. N. Gil, B. S. Kim, J. S. Choe, J. B. Kim, Y. H. Lee, and Y. Lim, Agerarin, identified from Ageratum houstonianum, stimulates circadian CLOCK-mediated aquaporin-3 gene expression in HaCaT keratinocytes, Sci. Rep., 7(1), 11175 (2017). (20) S. S. Ahn, Y. H. Lee, H. Yeo, Y. Lee, D. S. Min, Y. Lim, and S. Y. Shin, Effect of 6,7-dimethoxy-2,2- dimethyl-2H-chromene (agerarin) on the recovery of filaggrin expression through targeting of Janus kinases in the inflammatory skin, J. Food Drug Anal., 28(3), 449–460 (2020). (21) M. L. Ashour and M. Wink, Genus Bupleurum: a review of its phytochemistry, pharmacology and modes of action, J. Pharm. Pharmacol., 63(3), 305–321 (2011). (22) C. N. Lu, Z. G. Yuan, X. L. Zhang, R. Yan, Y. Q. Zhao, M. Liao, and J. X. Chen, Saikosaponin a and its epimer saikosaponin d exhibit anti-inflammatory activity by suppressing activation of NF-κB signaling pathway, Int. Immunopharmacol., 14(1), 121–126 (2012). (23) B. Yuan, R. Yang, Y. Ma, S. Zhou, X. Zhang, and Y. Liu, A systematic review of the active saikosaponins and extracts isolated from radix bupleuri and their applications, Pharm. Biol., 55(1), 620–635 (2017). (24) Z. A. Du, M. N. Sun, and Z. S. Hu, Saikosaponin a ameliorates LPS-induced acute lung injury in mice, Inflammation, 41(1), 193–198 (2018). (25) W. H. Park, S. Kang, Y. Piao, C. J. Pak, M. S. Oh, J. Kim, M. S. Kang, and Y. K. Pak, Ethanol extract of Bupleurum falcatum and saikosaponins inhibit neuroinflammation via inhibition of NF-κB, J. Ethnopharmacol., 174, 37–44 (2015). (26) T. T. Bui, C. H. Piao, E. Hyeon, Y. Fan, D. W. Choi, S. Y. Jung, B. H. Jang, H. S. Shin, C. H. Song, and O. H. Chai, Preventive effect of Bupleurum chinense on nasal inflammation via suppressing T helper type 2, eosinophil and mast cell activation, Am. J. Chin. Med., 47(2), 405–421 (2019). (27) C. H. Piao, C. H. Song, E. J. Lee, and O. H. Chai, Saikosaponin a ameliorates nasal inflammation by suppressing IL6/ROR-Γt/STAT3/IL17/NF-κB pathway in OVA-induced allergic rhinitis, Chem. Biol. Interact., 315, 10.8874 (2020). (28) A. Szopa, R. Ekiert, and H. Ekiert, Current knowledge of Schisandra chinensis (turcz.) baill. (Chinese magnolia vine) as a medicinal plant species: a review on the bioactive components, pharmacological properties, analytical and biotechnological studies, Phytochem. Rev., 16(2), 195–218 (2017). (29) K. P. Lee, S. Kang, S. J. Park, J. M. Kim, J. M. Lee, A. Y. Lee, H. Y. Chung, Y. W. Choi, Y. G. Lee, and D. S. Im, Anti-allergic effect of alpha-cubebenoate isolated from Schisandra chinensis using in vivo and in vitro experiments, J. Ethnopharmacol., 173, 361–369 (2015). (30) B. Lee, E. A. Bae, H. T. Trinh, Y. W. Shin, T. T. Phuong, K. H. Bae, and D. H. Kim, Inhibitory effect of schizandrin on passive cutaneous anaphylaxis reaction and scratching behaviors in mice, Biol. Pharm. Bull., 30(6), 1153–1156 (2007).
598 JOURNAL OF COSMETIC SCIENCE (31) Y. H. Kang and H. M. Shin, Inhibitory effects of Schizandra chinensis extract on atopic dermatitis in NC/Nga mice, Immunopharmacol. Immunotoxicol., 34(2), 292–298 (2012). (32) S. Y. Shin, J. Lee, H. N. Gil, Y. J. Jung, G. L. Kim, G. H. Kang, and Y. Lim, Schisandra chinensis inhibiting TGFβ-induced activation of hepatic stellate cells, Appl. Biol. Chem., 61(6), 607–616 (2018). (33) H. Yeo, S. S. Ahn, J. Y. Lee, E. Jung, M. Jeong, G. S. Kang, S. Ahn, Y. Lee, D. Koh, Y. H. Lee, Y. Lim, and S. Y. Shin, Disrupting the DNA binding of EGR-1 with a small-molecule inhibitor ameliorates 2,4-dinitrochlorobenzene-induced skin inflammation, J. Invest. Dermatol., 141(7), 1851–1855 (2021). (34) S. Weidinger and N. Novak, Atopic dermatitis, Lancet, 387(10023), 1109–1122 (2016). (35) C. N. Palmer, A. D. Irvine, A. Terron-Kwiatkowski, Y. Zhao, H. Liao, S. P. Lee, D. R. Goudie, A. Sandilands, L. E. Campbell, F. J. Smith, G. M. O’Regan, R. M. Watson, J. E. Cecil, S. J. Bale, J. G. Compton, J. J. DiGiovanna, P. Fleckman, S. Lewis-Jones, G. Arseculeratne, A. Sergeant, C. S. Munro, B. El Houate, K. Mcelreavey, L. B. Halkjaer, H. Bisgaard, S. Mukhopadhyay, and W. H. McLean, Common loss-of-function variants of the epidermal barrier protein filaggrin are a major predisposing factor for atopic dermatitis, Nat. Genet., 38(4), 441–446 (2006). (36) B. A. Dale, K. A. Resing, and J. D. Lonsdale-Eccles, Filaggrin: a keratin filament associated protein, Ann. N. Y. Acad. Sci., 455, 330–342 (1985). (37) C. R. Harding, S. Aho, and C. A. Bosko, Filaggrin - revisited, Int. J. Cosmet. Sci., 35(5), 412–423 (2013). (38) S. Kezic, P. M. Kemperman, E. S. Koster, C. M. de Jongh, H. B. Thio, L. E. Campbell, A. D. Irvine, W. H. McLean, G. J. Puppels, and P. J. Caspers, Loss-of-function mutations in the filaggrin gene lead to reduced level of natural moisturizing factor in the stratum corneum, J. Invest. Dermatol., 128(8), 2117–2119 (2008). (39) J. M. Jungersted, H. Scheer, M. Mempel, H. Baurecht, L. Cifuentes, J. K. Høgh, L. I. Hellgren, G. B. Jemec, T. Agner, and S. Weidinger, Stratum corneum lipids, skin barrier function and filaggrin mutations in patients with atopic eczema, Allergy, 65(7), 911–918 (2010). (40) M. C. Winge, T. Hoppe, B. Berne, A. Vahlquist, M. Nordenskjöld, M. Bradley, and H. Törmä, Filaggrin genotype determines functional and molecular alterations in skin of patients with atopic dermatitis and ichthyosis vulgaris, PLOS ONE, 6(12), e28254 (2011). (41) G. Yosipovitch, L. Misery, E. Proksch, M. Metz, S. Ständer, and M. Schmelz, Skin barrier damage and itch: review of mechanisms, topical management and future directions, Acta Derm. Venereol., 99(13), 1201–1209 (2019). (42) M. Hvid, C. Vestergaard, K. Kemp, G. B. Christensen, B. Deleuran, and M. Deleuran, IL-25 in atopic dermatitis: a possible link between inflammation and skin barrier dysfunction?, J. Invest. Dermatol., 131(1), 150–157 (2011). (43) K. Boniface, F. X. Bernard, M. Garcia, A. L. Gurney, J. C. Lecron, and F. Morel, IL-22 inhibits epidermal differentiation and induces proinflammatory gene expression and migration of human keratinocytes, J. Immunol., 174(6), 3695–3702 (2005). (44) F. Wang and B. S. Kim, Itch: a paradigm of neuroimmune crosstalk, Immunity, 52(5), 753–766 (2020). (45) L. K. Oetjen, M. R. Mack, J. Feng, T. M. Whelan, H. Niu, C. J. Guo, S. Chen, A. M. Trier, A. Z. Xu, S. V. Tripathi, J. Luo, X. Gao, L. Yang, S. L. Hamilton, P. L. Wang, J. R. Brestoff, M. L. Council, R. Brasington, A. Schaffer, F. Brombacher, C. S. Hsieh, R. W. T. Gereau, M. J. Miller, Z. F. Chen, H. Hu, S. Davidson, Q. Liu, and B. S. Kim, Sensory neurons co-opt classical immune signaling pathways to mediate chronic itch, Cell, 171(1), 217–228.e13 (2017). (46) L. S. Wong, T. Wu, and C. H. Lee, Inflammatory and noninflammatory itch: implications in pathophysiology-directed treatments, Int. J. Mol. Sci., 18(7), 1485 (2017). (47) F. Cevikbas, X. Wang, T. Akiyama, C. Kempkes, T. Savinko, A. Antal, G. Kukova, T. Buhl, A. Ikoma, J. Buddenkotte, V. Soumelis, M. Feld, H. Alenius, S. R. Dillon, E. Carstens, B. Homey, A. Basbaum, and M. Steinhoff, A sensory neuron-expressed IL-31 receptor mediates T helper cell-dependent itch: involvement of TRPV1 and TRPA1, J. Allergy Clin. Immunol., 133(2), 448–460 (2014). (48) D. Green and X. Dong, The cell biology of acute itch, J. Cell Biol., 213(2), 155–161 (2016). (49) T. Takai, TSLP expression: cellular sources, triggers, and regulatory mechanisms, Allergol. Int., 61(1), 3–17 (2012). (50) S. F. Ziegler, Thymic stromal lymphopoietin and allergic disease, J. Allergy Clin. Immunol., 130(4), 845– 852 (2012). (51) J. M. Leyva-Castillo, P. Hener, P. Michea, H. Karasuyama, S. Chan, V. Soumelis, and M. Li, Skin thymic stromal lymphopoietin initiates Th2 responses through an orchestrated immune cascade, Nat. Commun., 4, 2847 (2013).
Previous Page Next Page