TGA-INDUCED STRUCTURAL CHANGES IN HAIR 195 (7) C. R. Robbins, Chemical and Physical Behavior of Human Hair, 4th Ed. (Springer-Verlag, New York, 2002). (8) S. Ogawa, Y. Takeda, K. Kaneyama, K. Joko, and K. Arai, Chemical reactions occurring in curing treat- ment for permanent hair straightening using thioglycolic and dithioglycolic acids, Sen’i Gakkaishi, 65, 15–23 (2009). (9) K. Sakurai and K. Joko, Effects of some relaxation treatments on the waving performance of the perma- nent waving procedure of human hair, Sen’i Gakkaishi, 66, 272–279 (2010). (10) S. Ogawa, K. Fujii, K. Kaneyama, K. Arai, and K. Joko, A curing method for permanent hair straight- ening using thioglycolic and dithiodiglycolic acids, J. Cosmet. Sci., 51, 379–399 (2000). (11) A. R. Haly and M. Feughelman, Supercontracting and setting behavior of modifi ed wool fi bers, Text. Res. J., 30, 365–372 (1960). (12) E. Menefee, physical and chemical consequences of keratin crosslinking, with application to the deter- mination of crosslink density, Adv. Exp. Med. Biol., 86, 307–327 (1977). (13) S. Naito and K. Arai, Type and location of SS linkages in human hair and their relation to fi ber proper- ties in water, J. Appl. Polym. Sci., 61, 2113–2118 (1996). (14) K. Arai, G. Ma, and T. Hirata, Crosslinking structure of keratin. III. Rubberlike elasticity originating from non-uniform structures of the swollen hair and wool fi bers, J. Appl. Polym. Sci., 42, 1125–1131 (1991). (15) S. Naito, K. Arai, M. Hirano, M. Nagasawa, and M. Sakamoto, Crosslinking structure of keratin. V. Number and type of crosslinks in microstructures of untreated and potassium cyanide treated human hair, J. Appl. Polym. Sci., 61, 1913–1925 (1996). (16) K. Arai, S. Naito, V. B. Dang, N. Nagasawa, and M. Hirano, Crosslinking structure of keratin. VI. Number, type, and location of disulfi de crosslinkages in low-sulfur protein of wool fi ber and their rela- tion to permanent set, J. Appl. Polym. Sci., 60, 169–179 (1996). (17) K. Arai, N. Sasaki, S. Naito, and T. Takahashi, Crosslinking structure of keratin. I. Determination of the number of crosslinks in hair and wool keratins from mechanical properties of the swollen fi ber, J. Appl. Polym. Sci., 38, 1159–1172 (1989). (18) D. Weigmann, L. Rebenfeld, and C. Dansizer, Kinetics and temperature dependence of the chemical stress relaxation of wool fi bers, Text. Res. J., 36, 535–542 (1966). (19) K. Arai and T. Hanyu, Rheological properties of swollen wool in concentrated lithium bromide solu- tions containing mono- or di-ethylene glycol monoalkyl ether, Proc. 6th Int. Wool Text. Res. Conf., Pretoria, 2, 285–294 (1980). (20) M. Feughelman, A two-phase structure for keratin fi bers, Text. Res. J., 29, 223–228 (1959). (21) W. G. Crewther, The stress-strain characteristics of animal fi bers after reduction and alkylation, Text. Res. J., 35, 867–877 (1965). (22) L. R. G. Treloar, The Physics of Rubber Elasticity, 3rd Ed. (Clarendon Press, Oxford, 1975). (23) W. J. Leonard, Jr., Block copolymer elasticity, J. Polym. Sci. Polym. Symp., 54, 237–248 (1976). (24) W. G. Crewther, L. M. Dowling, K. H. Gough, R. C. Marshall, and L. G. Sparrow, “The Microfi brillar Proteins of Alpha-Keratin,” in Fibrous Proteins: Scientifi c, Industrial and Medical Aspects, D. A. D. Parry and K. Creamer. Eds. (Academic Press, London, 1980), Vol. 2, pp. 151–159. (25) L. Langbein, M. A. Rogers, H. Winter, S. Praetze, and J. Schweizer, The catalog of human hair keratins. II. Expression of the six type II members in the hair follicle and the combined catalog of human type I and II keratins, J. Biol. Chem., 276, 35123–35132 (2001). (26) D. A. D. Parry and R. D. B. Fraser, Intermediate fi lament structure. I. Analysis of IF protein sequence data, Int. J. Biol. Macromol., 7, 203–213 (1985). (27) P. M. Steinert, Structure, function, and dynamics of keratin intermediate fi laments, J. Invest. Dermatol., 100, 729–734 (1993). (28) L. C. Gruen and E. F. Woods, Structural studies on the microfi brillar proteins of wool. Interaction be- tween alpha-helical segments and reassembly of a four-chain structure, Biochem. J., 209, 587–595 (1983). (29) J. F. Conway, R. D. B. Fraser, T. P. MacRae, and D. A. D. Parry, “Protein Chains in Wool and Epider- mal Keratin IF: Structural Features and Spatial Arrangement,” in The Biology of Wool and Hair, G. E. Rogers, P. J. Reis, K. A. Ward, and R. C. Marshall, Eds. (Chapman and Hall, New York, 1989), pp. 127–144. (30) R. D. B. Fraser, T. P. MacRae, L. G. Sparrow, and D. A. D. Parry, Disulphide bonding in α-keratin, Int. J. Biol. Macromol., 10, 106–112 (1988). (31) J. M. Gillespie, The high-sulfur proteins of α-keratins: Their relation to fi ber structure and properties, J. Polym. Sci., Part C, 20, 201–214 (1967).
JOURNAL OF COSMETIC SCIENCE 196 (32) D. S. Fudge, K. H. Gardner, V. T. Forsyth, C. Rickel, and J. M. Gosline, The mechanical properties of hydrated intermediate fi laments: Insights from hagfi sh slime threads, Biophys. J., 85, 2015–2027 (2003). (33) M. Feughelman, Creep of wool fi bers in water, J. Text. Inst., 45, T630–T641 (1954). (34) M. Feughelman, Natural protein fi bers, J. Appl. Polym. Sci., 83, 489–507 (2002). (35) M. Feughelman and R. Griffi th, The relationship between the mechanical properties of α-keratin fi bers and the structure of their cortex, Proc. 9th Int. Wool Text. Res. Conf., Biella, 2, 31–43 (1995). (36) F.-J. Wortmann, C. Springob, and G. Sendelbach, Investigations of cosmetically treated human hair by differential scanning calorimetry in water, J. Cosmet. Sci., 53, 219–228 (2002).
Purchased for the exclusive use of nofirst nolast (unknown) From: SCC Media Library & Resource Center (library.scconline.org)

































































