CYTOKINES EXPRESSION AND LYE AND NO-LYE RELAXERS 117 in alkalinity. This observation suggests that other mechanisms may be involved in differ- ences in sensory perception between the two relaxers as reported by consumers. It is likely that further studies will be required to explore the role of individual ingredients to an- swer the question. REFERENCES (1) A. N. Syed, Ethnic hair care products, J. Soc. Cosmet. Chem., 12, 235–259 (1995). (2) A. N. Syed and A. R. Naqvi, Comparing the irritation potential of lye and no-lye relaxers, Cosmet. Toiletries, 115, 47–52 (2000). (3) T. M. Cunha, W. A. Verri Jr, J. S. Silva, S. Poole, F. Q. Cunha, and S. H. Ferreira, A cascade of cytokines mediates mechanical hypernociception in mice, Proc. Natl Acad. Sci. USA, 105, 1755–1760 (2005). (4) W. A. Verri Jr, T. M. Cunha, C. A. Parada, S. Poole, F. Q. Cunha, and S. H. Ferreira, Hypernociceptive role of cytokines and chemokines: Targets for analgesic drug development? Pharmacol. Ther., 112, 116–138 (2006). (5) D. Julius and A. I. Bausbaum, Molecular mechanisms of nociception, Nature, 413, 203–210 (2001). (6) X. Chen, K. Tanner, and J. D. Levin, Mechanical sensitization of cutaneous C-fi ber nociceptors by PGE2 in the rat, Neurosci. Lett., 267, 105–108 (1999). (7) G. F. Gerberick and M. K. Robinson, A skin sensitization risk approach for evaluation of new ingredi- ents and products, Am. J. Contact Dermatitis, 11, 65–73 (2000). (8) M. A. Perkins, C. W. Cardin, M. A. Osterheus, M. A. Farage, and M. K. Robinson, A non-invasive method to assess skin irritation and compromised skin conditions using simple tape adsorption of molecular markers of infl ammation, Skin Res. Technol., 7, 227–337 (2001). (9) J. Hauser, H. Saurat, A. Schmitt, F. Jaunin, and J. M. Dayer, Interleukin-1α is present in normal human epidermis, J. Immunol., 136, 3317–3323 (1986). (10) T. S. Kupper and R. W. Groves, The interleukin-1 axis and cutaneous infl ammation, J. Invest. Dermatol., 105, 62s–66s (1995). (11) T. Agner, J. Serup, V. Handlos, and W. Batsberg, Different skin irritation abilities of different qualities of sodium lauryl sulphate, Contact Dermatitis, 21, 184–188 (1989). (12) B. G. Green and J. Bluth, Measuring chemosensory irritability of human skin, J. Cutan. Ocul. Toxicol., 14, 23–48 (1995). (13) D. Veronesi, M. Sailstad, D. L. Doerfl er, and M. Selgrade, Neuropeptide modulation of chemically induced skin irritation, Toxicol. Appl. Pharmacol., 135, 258–267 (1995). (14) T. Minami, H. Nakano, T. Kobayashi, Y. Sugimoto, F. Ushikubi, A. Ichikawa, S. Narumiya, and S. Ito, Characterization of EP receptor subtypes responsible for prostaglandin E2-induced pain responses by use of EP1 and EP3 receptor knockout mice, Br. J. Pharmacol., 133, 438–444 (2001). (15) T. E. Taylor-Clark, B. J. Undem, D. W. MacGlashan Jr, S. Ghatta, M. J. Carr, and M. A. McAlexander, Prostaglandin-induced activation of nociceptive neurons via direct interaction with transient receptor potential A1 (TRPA1), Mol. Pharmacol., 73, 274–281 (2008). (16) O. Hagermark, K. Strandberg, and M. Hamberg, Potentiation of itch and fl are responses in human skin by prostaglandins E2 and H2 and a prostaglandin endoperoxide analog, J. Invest. Dermatol., 69, 527–530 (1977). (17) T. M. Cunha, W. A. Verri Jr, G. G. Vivancos, I. F. Moreira, S. Reis, C. A. Paranda, F. Q. Cunha, and S. H. Ferreira, An electronic pressure-meter nociception paw test for mice, Braz. J. Med. Biol. Res., 37, 401–407 (2004). (18) J. Nickoloff and J. Naidu, Perturbation of epidermal barrier function correlates with irritation of cytokine cascade in human skin, J. Am. Acad. Dermatol., 30, 535–546 (1994).
Previous Page Next Page