EFFECTS OF TAMARIND SEED COAT EXTRACT ON HUMAN SKIN 23 REFERENCES (1) D. He, J. Sun, X. Zhu, S. Nian, and J. Liu, Compound K increases type I procollagen level and decreases matrix metalloproteinase-1 activity and level in ultraviolet-A-irradiated fi broblasts, J. Formos. Med. Assoc., 110, 153–160 (2011). (2) N. Buechner, P. Schroeder, S. Jakob, K. Kunze, T. Maresch, C. Calles, J. Krutmann, and J. Haendeler, Changes of MMP-1 and collagen type Iα1 by UVA, UVB and IRA are differentially regulated by Trx-1, Exp. Gerontol., 43, 633–637 (2008). (3) H. Watanabe, T. Shimizu, J. Nishihira, R. Abe, T. Nakayama, M. Taniguchi, H. Sabe, T. Ishibashi, and H. Shimizu, Ultraviolet A-induced production of matrix metalloproteinase-1 is mediated by macrophage migration inhibitory factor (MIF) in human dermal fi broblasts, J. Biol. Chem., 279, 1676–1683 (2004). (4) G. Jenkins, Molecular mechanisms of skin ageing, Mech. Ageing Dev., 123, 801–810 (2002). (5) E. C. Naylor, R. E. B. Watson, and M. J. Sherratt, Molecular aspects of skin aging, Maturitas, 69, 249–256 (2011). (6) T. M. Hagen, Oxidative stress, redox imbalance, and the aging process, Antioxid. Redox. Signal., 5, 503–506 (2003). (7) P.-J. Chua, G. W.-C. Yip, and B.-H. Bay, Cell cycle arrest induced by hydrogen peroxide is associated with modulation of oxidative stress related genes in breast cancer cells, Exp. Biol. Med., 234, 1086–1094 (2009). (8) M. Li, L. Zhao, J. Liu, A.-L. Liu, W.-S. Zeng, S.-Q. Luo, and X.-C. Bai, Hydrogen peroxide induces G2 cell cycle arrest and inhibits cell proliferation in osteoblasts, Anat. Rec., 292, 1107–1113 (2009). (9) F. Hazane, S. Sauvaigo, T. Douki, A. Favier, and J.-C. Beani, Age-dependent DNA repair and cell cycle distribution of human skin fibroblasts in response to UVA irradiation, J. Phytochem. Photobiol., 82, 214– 223 (2006). (10) T. Pluemsamran, T. Onkoksoong, and U. Panich, Caffeic acid and ferulic acid inhibit UVA-induced matrix metalloproteinase-1 through regulation of antioxidant defense system in keratinocyte HaCaT cells, Photochem. Photobiol., 88, 961–968 (2012). (11) J. Viyoch, S. Buranajaree, F. Grandmottet, S. Robin, D. Binda, C. Viennet, N. Waranuch, and P. Humbert, Evaluation of the effect of Thai breadfruit’s heartwood extract on the biological functions of fi broblasts from wrinkles, J. Cosmet. Sci., 61, 311–324 (2010). (12) J. Kim, J. S. Hwang, Y. K. Cho, Y. Han, Y. J. Jeon, and K. H. Yang, Protective effects of (-)-epigallocatechin- 3-gallate on UVA- and UVB-induced skin damage, Skin Pharmacol. Appl. Skin Physiol., 14, 11–19 (2001). (13) G. Pumthong, Antioxidative activity of polyphenolic compounds extracted from seed coat of Tamarindus indicus Linn. PhD Thesis, Chiangmai Mai University, Thailand, 1999. (14) T. Tsuda, M. Watanabe, K. Ohshima, A. Yamamoto, S. Kawakishi, and T. Osawa, Antioxidative components isolated from the seed of tamarind (Tamarindus indica L.), J. Agric. Food Chem., 42, 2671–2674 (1994). (15) W. Aengwanich, M. Suttajit, T. Srikhun, and T. Boonsorn, Antibiotic effect of polyphenolic compound extracted from tamarind (Tamarindus indica L.) seed coat on productive performance of broilers, Int. J. Poult. Sci., 8, 749–751 (2009). (16) T. Komutarin, S. Azadi, L. Butterworth, D. Keil, B. Chitsomboon, M. Suttajit, and B. J. Meade, Extract of the seed coat of Tamarindus indica inhibits nitric oxide product by murine macrophages in vitro and in vivo, Food Chem. Toxicol., 42, 649–658 (2004). (17) S. Intaraprasit, A. Faikrua, A. Sittichokechaiwut, and J. Viyoch, Effi cacy evaluation of the fi broblast- seeded collagen/chitosan scaffold on application in skin tissue engineering, ScienceAsia, 38, 268–277 (2012). (18) P. Inpanya, A. Faikrua, A. Ounaroon, A. Sittichokechaiwut, and J. Viyoch, Effects of the blended fi - broin/aloe gel fi lm on wound healing in streptozotocin-induced diabetic rats, Biomed. Mater., 7, 035008 (2012). doi: 10.1088/1748-6041/7/3/035008. (19) K. Tanaka, N. Fujita, M. Yoshioka, and N. Ogawa, Immunosuppressive and non-immunosuppressive immunophilin ligands improve H2O2-induced cell damage by increasing glutathione levels in NG108- 15 cells, Brain Res., 889, 225–228 (2001). (20) M. I. Gil, F. A. Tomás-Barberán, B. Hess-Pierce, and A. A. Kader, Antioxidant capacities, phenolic compounds, carotenoids, and vitamin C contents of nectarine, peach, and plum cultivars from Califor- nia, J. Agric. Food Chem., 50, 4976–4982 (2002). (21) L. P. Leong and G. Shui, An investigation of antioxidant capacity of fruits in Singapore markets, Food Chem., 76, 69–75 (2002). (22) C. Guo, J. Yang, J. Wei, Y. Li, J. Xu, and Y. Jiang, Antioxidant activities of peel, pulp and seed fractions of common fruits as determined by FRAP assay, Nutr. Res., 23, 1719–1726 (2003).
JOURNAL OF COSMETIC SCIENCE 24 (23) A. Floegel, D.-O. Kim, S.-J. Chung, S. I. Koo, and O. K. Chun, Comparison of ABTS/DPPH assays to measure antioxidant capacity in popular antioxidant-rich US foods, J. Food Compos. Anal., 24, 1043– 1048 (2011). (24) J. Deng, W. Cheng, and G. Yang, A novel antioxidant index (AAU) for natural products using the DPPH assay, Food Chem., 125, 1430–1435 (2011). (25) N. Lourith, M. Kanlayavattanakul, and S. Chanpirom, Free radical scavenging activity of tamarind seed coat and its cosmetic application, J. Health Res., 23, 159–162 (2009). (26) Y. Sudjaroen, R. Haubner, G. Würtele, W. E. Hull, G. Erben, B. Spiegelhalder, S. Changbumrung, H. Bartsch, and R. W. Owen, Isolation and structure elucidation of phenolic antioxidants from tamarind (Tamarindus indica L.) seeds and pericarp, Food Chem. Toxicol., 43, 1673–82 (2005). (27) W. Dröge, Free radicals in the physiological control of cell function, Physiol. Rev., 82, 47–95 (2002). (28) C. A. Rice-Evans and N. J. Miller, Antioxidant activities of fl avonoids as bioactive components of food, Biochem. Soc. Trans., 24, 790–795(1996). (29) A. Arora, T. M. Byrem, M. G. Nair, and G. M. Strasburg, Modulation of liposomal membrane fl uidity by fl avonoids and isofl avonoids, Arch. Biochem. Biophys., 373, 102–109 (2000). (30) A. Tarozzi, A. Marchesi, S. Hrelia, C. Angeloni, V. Andrisano, J. Fiori, G. Cantelli-Forti, and P. Hrelia, Protective effects of cyanidin-3-O-β-glucopyranoside against UVA-induced oxidative stress in human keratinocytes, Photochem. Photobiol., 81, 623–629 (2005). (31) R. P. Singh, S. Sharad, and S. Kapur, Free radicals and oxidative stress in neurodegenerative diseases: Relevance of dietary antioxidants, J. Indian Acad. Clin. Med., 5, 218–225 (2004). (32) A. Chiu and A. B. Kimball, Topical vitamins, minerals and botanical ingredients as modulators of en- vironmental and chronological skin damage, Br. J. Dermatol., 149, 681–691 (2003). (33) A. Svobodová, J. Psotová, and D. Walterová, Natural phenolics in the prevention of UV-induced skin damage. A review, Biomed. Pap., 147, 137–145 (2003). (34) Y. Y. He, J. L. Huang, D. C. Ramirez, and C. F. Chignell, Role of reduced glutathione effl ux in apopto- sis of immortalized human keratinocytes induced by UVA, J. Biol. Chem, 278, 8058–8064 (2003). (35) L. Yin, A. Morita, and T. Tsuji, Skin aging induced by ultraviolet exposure and tobacco smoking: Evi- dence from epidemiological and molecular studies, Photodermatol. Photoimmunol. Photomed., 17, 178–183 (2001). (36) M. Wlaschek, G. Heinen, A. Poswig, A. Schwarz, T. Krieg, and K. Scharffetter-Kochanek, UVA-induced autocrine stimulation of fi broblast-derived collagenase/MMP-1 by interrelated loops of interleukin-1 and interleukin-6, Photochem. Photobiol., 59, 550–556 (1994). (37) Z. Liu, H. Chen, H. Yang, J. Liang, and X. Li, Low-dose UVA radiation-induced adaptive response in cultured human dermal fi broblasts, Int. J. Photoenergy 2012, 1–11 (2012). (38) F. Afaq and H. Mukhtar, Effects of solar radiation on cutaneous detoxification pathways, J. Photochem. Photobiol. B., 63, 61–69 (2001). (39) C. L. Hammond, T. K. Lee, and N. Ballatori, Novel roles for glutathione in gene expression, cell death, and membrane transport of organic solutes, J. Hepatol., 34, 946–954 (2001). (40) T. Quan, Z. Qin, W. Xia, Y. Shao, J. J. Voorhees, and G. J. Fisher, Matrix-degrading metalloproteinases in photoaging, J. Investig. Dermatol. Symp. Proc., 14, 20–24 (2009). (41) M. Brennan, H. Bhatti, K. C. Nerusu, N. Bhagavathula, S. Kang, G. J. Fisher, J. Varani, and J. J. Voorhees, Matrix mettalloproteinase-1 is the major collagenolytic enzyme responsible for collagen damage in UV- irradiated human skin, Photochem. Photobiol., 78, 43–48 (2003). (42) G. J. Fisher, H. C. Choi, Z. Bata-Csorgo, Y. Shao, S. Datta, Z. Q. Wang, S. Kang, and J. J. Voorhees, Ultraviolet irradiation increases matrix metalloproteinase-8 protein in human skin in vivo, J. Invest. Dermatol., 117, 219–226 (2001). (43) T. Quan, T. He, S. Kang, J. J. Voorhees, and G. J. Fisher, Ultraviolet irradiation alters transforming growth factor beta/smad pathway in human skin in vivo, J. Invest. Dermatol., 119, 499–506 (2002). (44) L. Yin, A. Morita, and T. Tsuji, The crucial role of TGF-b in the age-related alterations induced by ul- traviolet A irradiation, J. Invest. Dermatol., 120, 703–705 (2003). (45) X. Z. Song, J. P. Xia, and Z. G. Bi, Effects of (-)-epigallocatechin-3-gallate on expression of matrix metalloproteinase-1 and tissue inhibitor of metalloproteinase-1 in fi broblasts irradiated with ultraviolet A, Chin. Med. J. (Engl.), 117, 1838–1841 (2004).
Previous Page Next Page