JOURNAL OF COSMETIC SCIENCE 494 ( 10) D. Xanthos and T. R. Walker, International policies to reduce plastic marine pollution from single-use plastics (plastic bags and microbeads): a review, Mar. Pollut. Bull., 118(1–2), 17–26 (2017). ( 11) C. Gallegos and J. M. Franco, Rheology of food, cosmetics and pharmaceuticals, Curr. Opin. Colloid In- terf. Sci., 4(4), 288–293 (1999). ( 12) W. Richtering, Rheology and shear induced structures in surfactant solutions, Curr. Opin. Colloid Interf. Sci., 6(5–6), 446–450 (2001). ( 13) L. L. Schramm, Fundamentals and applications in the petroleum industry, Adv. Chem., 231, 3–24 (1992). ( 14) J. N. Israelachvili, Intermolecular and Surface Forces, 2nd Ed. (Academic Press, London, United Kingdom, 1992). ( 15) T. Tadros, Encyclopedia of Colloid and Interface Science (Springer, Berlin, 2013). ( 16) S. Sinha, D. Tikariha, J. Lakra, A. K. Tiwari, S. K. Saha, and K. K. Ghosh, Effect of polar organic sol- vents on self-aggregation of some cationic monomeric and dimeric surfactants, J. Surfactants Deterg., 18(4), 629–640 (2015). ( 17) D. Myers, Surfactant Science and Technology 3rd Ed., (John Wiley & Sons, Hoboken, NJ 2005). ( 18) H. Jiang, G. Beaucage, K. Vogtt, and M. Weaver, The effect of solvent polarity on wormlike micelles using dipropylene glycol (DPG) as a cosolvent in an anionic/zwitterionic mixed surfactant system, J. Colloid Interf. Sci., 509, 25–31 (2018). ( 19) S. Amin, S. Blake, R. C. Kennel, and E. N. Lewis, Revealing new structural insights from surfactant micelles through DLS, microrheology and Raman spectroscopy, Materials, 8(6), 3754–3766 (2015). ( 20) K. N. Silva, R. Novoa-Carballal, M. Drechsler, A. H. Müller, E. K. Penott-Chang, and A. J. Müller, The infl uence of concentration and pH on the structure and rheology of cationic surfactant/hydrotrope struc- tured fl uids, Colloid Surf. Physicochem. Eng. Aspect., 489, 311–321 (2016). (21) L. Xu and S. Amin, Microrheological study of ternary surfactant-biosurfactant mixtures, Int. J. Cosmet. Sci., 41(4), 364–370 (2019). (22) S . R. Raghavan and E. W. Kaler, Highly viscoelastic wormlike micellar solutions formed by cationic surfactants with long unsaturated tails, Langmuir, 17(2), 300–306 (2001). (23) B . Lu, X. Li, J. L. Zakin, and Y. Talmon, A non-viscoelastic drag reducing cationic surfactant system, J. Non-Newtonian Fluid Mech., 71(1–2), 59–72 (1997). (24) B . Lu, Y. Zheng, H. T. Davis, L. E. Scriven, Y. Talmon, and J. L. Zakin, Effect of variations in counter- ion to surfactant ratio on rheology and microstructures of drag reducing cationic surfactant systems, Rheol. Acta, 37(6), 528–548 (1998). (25) B . C. Smith, L. C. Chou, and J. L. Zakin, Measurement of the orientational binding of counterions by nuclear magnetic resonance measurements to predict drag reduction in cationic surfactant micelle solu- tions, J. Rheology, 38(1), 73–83 (1994). (26) S . Padasala, V. Patel, K. Singh, D. Ray, V. K. Aswal, and P. Bahadur, Effect of polymers on worm-like micelles of cetyltrimethylammonium tosylate, Colloid Surf. Physicochem. Eng. Aspect., 502, 147–158 (2016). (27) M . T. Truong and L. M. Walker Controlling the shear-induced structural transition of rodlike micelles using nonionic polymer, Langmuir, 16(21), 7991–7998 (2000). (28) T . Imae and S. Ikeda, Characteristics of rodlike micelles of cetyltrimethylammonium chloride in aque- ous NaCl solutions: their fl exibility and the scaling laws in dilute and semidilute regimes, Colloid Polym. Sci., 265(12), 1090–1098 (1987). (29) R . Gamez-Corrales, J. F. Berret, L. M. Walker, and J. Oberdisse, Shear-thickening dilute surfactant so- lutions: equilibrium structure as studied by small-angle neutron scattering, Langmuir, 15(20), 6755– 6763 (1999). (30) M . Brigante and P. C. Schulz, Synthesis of mesoporous silicas in alkaline and acidic media using the systems cetyltrimethylammonium tosylate (CTAT)–Pluronic F127 triblock copolymer and CTAT– Pluronic F68 triblock copolymer as templates, J. Colloid Interf. Sci., 369(1), 71–81 (2012). (31) P . Alexandridis and T. A. Hatton, Poly (ethylene oxide)-poly (propylene oxide)-poly (ethylene oxide) block copolymer surfactants in aqueous solutions and at interfaces: thermodynamics, structure, dynam- ics, and modelling, Colloid Surf. Physicochem. Eng. Aspect., 96(1–2), 1–46 (1995). (32) E . Miller and J. P. Rothstein, Transient evolution of shear-banding wormlike micellar solutions, J. Non- Newtonian Fluid Mech., 143(1), 22–37 (2007). (33) B . Arenas-Gómez, C. Garza, Y. Liu, and R. Castillo, Alignment of worm-like micelles at intermediate and high shear rates, J. Colloid Interf. Sci., 560, 618–625 (2020). (34) Y . Yamagata and M. Senna, Change in viscoelastic behaviors due to phase transition of the assembly com- prising cetyltrimethylammonium chloride/cetyl alcohol/water, Langmuir, 15(13), 4388–4391 (1999).
RHEOLOGY OF COSMETIC PRODUCTS 495 (35) G . M. Eccleston, The microstructure of semisolid creams, Pharm. Int., 7(3), 63–70 (1986). (36) P . Walstra, Physical Chemistry of Foods (Marcel Decker. Inc., New York, NY, 2003). (37) T. Iwata, Lamellar gel network. Cosmetic Science and Technology: Theoretical Principles and Applications, (Elsevier, New York) 415–447 (2017). (38) H. E. Junginger, Colloidal structures of O/W creams, Pharm. Weekbl., 6(4), 141–149 (1984). (39) D . Weaire, The rheology of foam, Curr. Opin. Colloid Interf. Sci., 13(3), 171–176 (2008). (40) O . Pitois, S. Cohen-Addad, and R. Höhler, Flow in foams and fl owing foams, Annu. Rev. Fluid Mech., 45, 241–247 (2013). (41) J. Sjoblom, Encyclopedic Handbook of Emulsion Technology (CRC Press, 2001). (42) I. Cantat, S. Cohen-Addad, F. Elias, F. Graner, R. Höhler, O. Pitois, F. Rouyer, and A. Saint-Jalmes, Foams: Structure and Dynamics (OUP Oxford, 2013). (43) P. M armottant and J. P. Raven, Microfl uidics with foams, Soft Matter, 5(18), 3385–3388 (2009). (44) P. M . Kruglyakov, S. I. Karakashev, A. V. Nguyen, and N. G. Vilkova, Foam drainage, Curr. Opin. Col- loid Interf. Sci., 13(3), 163–170 (2008). (45) N. V andewalle, H. Caps, G. Delon, A. Saint-Jalmes, E. Rio, L. Saulnier, M. Adler, A. L. Biance, O. Pitois, S. C. Addad, and R. Hohler, “Foam stability in microgravity,” in Journal of Physics: Conference Series, Vol. 327 (IOP Publishing, Bristol, England, 2011), pp. 012024. (46) D. L angevin, Infl uence of interfacial rheology on foam and emulsion properties, Adv. Colloid Interf. Sci., 88(1–2), 209–222 (2000). (47) K. G . Marinova, K. T. Naydenova, E. S. Basheva, F. Bauer, J. Tropsch, and J. Franke, New surfactant mixtures for fi ne foams with slowed drainage, Colloid Surf. Physicochem. Eng. Aspect., 523, 54–61 (2017). (48) C. C . Sánchez and J. M. R. Patino, Interfacial, foaming and emulsifying characteristics of sodium casein- ate as infl uenced by protein concentration in solution, Food Hydrocolloids, 19(3), 407–416 (2005). (49) D. Ta m arkin, M. Eini, and D. Friedman, Foam: the future of effective cosmeceuticals, Cosmet. Toilet., 121(11), 75–84 (2006). (50) W. Umba ch, Kosmetische Mittel-Entwicklung, Herstellung und Anwendung kosmetischer Mittel, Thieme Verlag, Stuttgart (1988). (51) G. A. No wak, Die Kosmetische Prä parate (Verlag fü r chemische Industrie H. Ziolkowsky, Augsburg, Germany, 1969) (52) J. F. Fowler, Jr., Effi cacy of a skin-protective foam in the treatment of chro n ic hand dermatitis, Am. J. Contact Dermatitis, 11(3), 165–169 (2000). (53) L. Paul, Liquid Foam Producing Compositions and Dispensing System Therefor, U. S . Patent Applica- tion 10/777,986 (2004). (54) T. G. Mason, New fundamental concepts in emulsion rheology, Curr. Opin. Colloi d Interf. Sci., 4(3), 231–238 (1999). (55) H. S. Kim and T. G. Mason, Advances and challenges in the rheology of concentr a ted emulsions and nano-emulsions, Adv. Colloid Interf. Sci., 247, 397–412 (2017). (56) A. Roso and R. Brinet, Rheology and texture analysis used together to improve r aw material choices, Cosmet. Toilet., 119(6), 53–60 (2004). (57) D. S. Jones, M. S. Lawlor, and A. D. Woolfson, Examination of the fl ow rheolog i cal and textural properties of polymer gels composed of poly (methylvinylether-co-maleic anhydride) and poly (vinylpyrrolidone): rheo- logical and mathematical interpretation of textural parameters, J. Pharm. Sci., 91(9), 2090–2101 (2002). (58) M. Lukic, I. Jaksic, V. Krstonosic, L. Dokic, and S. Savic, Effect of small chang e in oil phase composition on rheological and textural properties of w/o emulsion, J. Texture Stud., 44(1), 34–44 (2013). (59) M. Lukic, I. Jaksic, V. Krstonosic, N. Cekic, and S. Savic, A combined approach i n characterization of an effective w/o hand cream: the infl uence of emollient on textural, sensorial and in vivo skin perfor- mance, Int. J. Cosmet. Sci., 34(2), 140–149 (2012). (60) L. Gilbert, C. Picard, G. Savary, and M. Grisel, Rheological and textural charact e rization of cosmetic emulsions containing natural and synthetic polymers: relationships between both data, Colloid. Surface. Physicochem. Eng. Aspect., 421, 150–163 (2013). (61) E. Kettler, C. B. Müller, R. Klemp, M. Hloucha, T. Döring, W. Von Rybinski, and W . Richtering, “Polymer-stabilized emulsions: infl uence of emulsion components on rheological properties and droplet size,” in Surface and Interfacial Forces–From Fundamentals to Applications (Springer, Berlin, Germany, 2008), pp. 90–100. (62) J. M. Quintana, A. N. Califano, N. E. Zaritzky, P. Partal, and J. M. Franco, Linear and nonlinear visco- elastic behavior of oil-in-water emulsions stabilized with polysaccharides, J. Texture Stud., 33(3), 215– 236 (2002).
Purchased for the exclusive use of nofirst nolast (unknown) From: SCC Media Library & Resource Center (library.scconline.org)














































































































































