(6) P. I. Hynd, N. M. Edwards, M. Hebart, M. McDowall, and S. Clark, Wool fi bre crimp is determined by mitotic asymmetry and position of fi nal keratinisation and not ortho- and para-cortical cell segmenta- tion, Animal, 3(6), 838–843 (2009). (7) D. P. Harland and A. J. McKinnon, “Macrofi bril formation,” in The Hair Fibre: Proteins, Structure and Development. Advances in Experimental Medicine and Biology, Vol. 1054, J. E. Plowman, D. P. Harland, and S. Deb Choudhury, Eds. (Springer, New York, NY, 2018), pp. 155–169. (8) J. McKinnon and D. P. Harland, A concerted polymerization-mesophase separation model for formation of trichocyte intermediate fi laments and macrofi bril templates 1: relating phase separation to structural development. J. Struct. Biol., 173(2), 229–240 (2011). (9) S. L. Koch, M. D. Shriver, and N. G. Jablonski, Variation in human hair ultrastructure among three biogeographic populations, J. Struct. Biol., 205(1), 60–66 (2018). (10) W. G. Bryson, D. P. Harland, J. P. Caldwell, J. A. Vernon, R. J. Walls, J. L. Woods, S. Nagase, T. Itou, and K. Koike, Cortical cell types and intermediate fi lament arrangements correlate with fi ber curvature in Japanese human hair, J. Struct. Biol., 166(1), 46–58 (2009). (11) D. P. Harland, R. J. Walls, J. A. Vernon, J. M. Dyer, J. L. Woods, and F. Bell, Three-dimensional architecture of macrofibrils in the human scalp hair cortex, J. Struct. Biol., 185(3), 397–404 (2014). (12) D. F. G. Orwin, J. L. Woods, and S. L. Ranford, Cortical cell types and their distribution in wool fi bres, Aust. J. Biol. Sci., 37, 237–255 (1984). (13) D. P. Harland, J. A. Vernon, J. L. Woods, S. Nagase, T. Itou, K. Koike, D. A. Scobie, A. J. Grosvenor, J. M. Dyer, and S. Clerens, Intrinsic curvature in wool fi bres is determined by the relative length of orthocortical and paracortical cells, J. Exp. Biol., 221(Pt 6), 1–9 (2018). (14) Y. S. Lim, D. P. Harland, and T. L. Dawson, Jr., Wanted, dead and alive why a multidisciplinary ap- proach is needed to unlock hair treatment potential, Exp. Dermatol., 28, 517–527 (2019). (15) E. Cloete, N. P. Khumalo, and M. N. Ngoepe, The what, why and how of curly hair: a review, Proc. R. Soc. A, 475(2231), 20190516 (2019). (16) S. Thibaut, O. Gaillard, P. Bouhanna, D. W. Cannell, and B. A. Bernard, Human hair shape is pro- grammed from the bulb, Br. J. Dermatol., 152(4), 632–638 (2005). (17) S. Thibaut and B. A. Bernard, The biology of hair shape, Int. J. Dermatol., 44(Suppl. 1), 2–3 (2005). (18) G. Loussouarn, A. L. Garcel, I. Lozano, C. Collaudin, C. Porter, S. Panhard, D. Saint-Leger, and R. de La Mettrie, Worldwide diversity of hair curliness: a new method of assessment, Int. J. Dermatol., 46(Suppl. 1), 2–6 (2007). (19) F. Rohart, B. Gautier, A. Singh, and K. A. Le Cao, mixOmics: an R package for ‘omics feature selection and multiple data integration, PLos Comput. Biol., 13(11), e1005752 (2017). (20) L. Langbein, M. A. Rogers, M. A. Winter, S. Praetzel, and J. Schweizer, The catalog of human hair keratins. II. Expression of the six type II members in the hair follicle and the combined catalog of hu- man type I and II keratins, J. Biol. Chem., 276(37), 35123–35132 (2001). (21) Z. Yu, S. W. Gordon, A. J. Nixon, C. S. Bawden, M. A. Rogers, J. E. Wildermoth, N. J. Maqbool, and A. J. Pearson, Expression patterns of keratin intermediate fi lament and keratin associated protein genes in wool follicles, Differentiation, 77(3), 307–316 (2009). (22) J. E. Plowman and D. P. Harland, “Fibre ultrastructure,” in The Hair Fibre: Proteins, Structure and Devel- opment. Advances in Experimental Medicine and Biology, 1st Ed., J. E. Plowman, D. P. Harland, and S. Deb- Choudhury. Eds. (Springer Nature, Singapore, 2018), pp. 3–13. (23) J. P. Caldwell, D. N. Mastronarde, J. L. Woods, and W. G. Bryson, The three-dimensional arrangement of intermediate fi laments in Romney wool cortical cells, J. Struct. Biol., 151(3), 298–305 (2005). (24) D. P. Harland, J. P. Caldwell, J. L. Woods, R. J. Walls, and W. G. Bryson, Arrangement of trichokeratin intermediate fi laments and matrix in the cortex of merino wool, J. Struct. Biol., 173(1), 29–37 (2011). (25) W. G. Bryson, D. P. Harland, J. P. Caldwell, J. A. Vernon, R. J. Walls, J. L. Woods, S. Nagase, T. Itou, and K. Koike, Cortical cell types and intermediate fi lament arrangements correlate with fi ber curvature in Japanese human hair, J. Struct. Biol., 166(1), 46–58 (2009). (26) D. P. Harland, R. J. Walls, J. A. Vernon, J. M. Dyer, J. L. Woods, and F. Bell, Three-dimensional archi- tecture of macrofi brils in the human scalp hair cortex, J. Struct. Biol., 185(3), 397–404 (2014). (27) L. Langbein, M. A. Rogers, H. Winter, S. Praetzel, U. Beckhaus, H. R. Rackwitz, and J. Schweizer,. The catalog of human hair keratins. I. Expression of the nine type I members in the hair follicle, J. Biol. Chem., 274(28), 19874–19884 (1999). (28) S. Thibaut, P. Barbarat, F. Leroy, and B. A. Bernard, Human hair keratin network and curvature, Int. J. Dermatol., 46(Suppl. 1), 7–10 (2007). HAIR SHAPE PROTEOMICS 261
(29) A. J. McKinnon, D. P. Harland, and J. L. Woods, Relating self-assembly to spatio-temporal keratin expression in the wool follicle, J. Textile Eng., 62(6), 123–128 (2016). (30) S. W. Li, H. S. Ouyang, G. E. Rogers, and C. S. Bawden, Characterization of the structural and molecular defects in fi bres and follicles of the Merino felting lustre mutant, Exp. Dermatol., 18(2), 134–142 (2009). (31) J. E. Plowman, D. P. Harland, D. R. Scobie, D. O’Connell, A. Thomas, P. H. Brorens, M. Richena, E. Meenken, A. J. Phillips, J. A. Vernon, and S. Clerens, Differences between ultrastructure and protein composition in straight hair fi bres, Zoology (Jena), 133, 40–53 (2019). (32) B. C. Powell, A. Nesci, and G. E. Rogers, Regulation of keratin gene expression in hair follicle differ- entiation, Ann. N. Y. Acad. Sci., 642, 1–20 (1991). (33) L. Langbein, M. A. Rogers, S. Praetzel-Wunder, D. Bockler, P. Schirmacher, and J. Schweizer, Novel type I hair keratins K39 and K40 are the last to be expressed in differentiation of the hair: completion of the human hair keratin catalog, J. Invest. Dermatol., 127(6), 1532–1535 (2007). (34) R. M. Lavker, T.-T. Sun, H. Oshima, Y. Barrandon, M. Akiyama, C. Ferraris, G. Chevalier, B. Favier, C. A. B. Jahoda, D. Dhouailly, A. A. Panteleyev, and A. M. Christiano, Hair follicle stem cells, J. Invest. Dermatol. Symp. Proc., 8(1), 28–38 (2003). (35) H. J. Stark, D. Breitkreutz, A. Limat, C. M. Ryle, D. Roop, I. Leigh, and N. Fusenig, Keratins 1 and 10 or homologues as regular constituents of inner root sheath and cuticle cells in the human hair follicle, Eur. J. Cell Biol., 52(2), 359–372 (1990). (36) L. Langbein, H. Yoshida, S. Praetzel-Wunder, D. A. Parry, and J. Schweizer, The keratins of the human beard hair medulla: the riddle in the middle, J. Invest. Dermatol., 130(1), 55–73 (2010). (37) B. H. Koo, T. Hurskainen, K. Mielke, P. P. Aung, G. Casey, H. Autio-Harmainen, and S. S. Apte, ADAMTSL3/punctin-2, a gene frequently mutated in colorectal tumors, is widely expressed in normal and malignant epithelial cells, vascular endothelial cells and other cell types, and its mRNA is reduced in colon cancer, Int. J. Canc., 121(8), 1710–1716 (2007). (38) D. P. Harland and J. E. Plowman, “Development of hair fi bres,” In. The Hair Fibre: Proteins, Structure and Development. Advances in Experimental Medicine and Biology. Vol. 1054. J. E. Plowman, D. P. Harland, and S. Deb Choudhury, Eds. (Springer, New York, NY, 2018), pp. 109–154. (39) D. P. Harland, J. A. Vernon, J. L. Woods, S. Nagase, T. Itou, K. Koike, D. A. Scobie, A. J. Grosvenor, J. M. Dyer, and S. Clerens, Intrinsic curvature in wool fi bres is determined by the relative length of orthocortical and paracortical cells, J. Exp. Biol., 221, jeb172312 (2018). (40) Y. J. Lee, R. H. Rice, and Y. M. Lee, Proteome analysis of human hair shaft: from protein identifi cation to posttranslational modifi cation, Mol. Cell. Proteomics, 5(5), 789–800 (2006). (41) A. Pol, G. H. Renkema, A. Tangerman, E. G. Winkel, U. F. Engelke, A. P. M. de Brouwer, K. C. Lloyd, R. S. Araiza, L. van den Heuvel, H. Omran, H. Olbrich, M. Oude Elberink, C. Gilissen, R. J. Rodenburg, J. O. Sass, K. O. Schwab, H. Schäfer, H. Venselaar, J. S. Sequeira, H. J. M. Op den Camp, and R. A. Wevers, Mutations in SELENBP1, encoding a novel human methanethiol oxidase, cause extraoral halitosis, Nat. Genet., 50(1), 120–129 (2018). JOURNAL OF COSMETIC SCIENCE 262
Previous Page Next Page