SKIN-AGING AND INFLAMMAGING TREATMENT 339 (65) L . A. Brinton, D. R. Brogan, R. J. Coates, C. A. Swanson, N. Potischman, and J. L. Stanford, Breast cancer risk among women under 55 years of age by joint effects of usage of oral contraceptives and hormone replacement therapy, Menopause, 25, 1195–1200 (2018). (66) F . Laliberté, K. Dea, M. S. Duh, K. H. Kahler, M. Rolli, and P. Lefebvre, Does the route of admin- istration for estrogen hormone therapy impact the risk of venous thromboembolism? Estradiol transdermal system versus oral estrogen-only hormone therapy, Menopause, 25, 1297–1305 (2018). (67) Z . Fazeli, A. Abedindo, M. D. Omrani, and S. M. H. Ghaderian, Mesenchymal stem cells (MSCs) therapy for recovery of fertility: a systematic review, Stem Cell Rev. Rep., 14, 1–12 (2018). (68) J . Doles, M. Storer, L. Cozzuto, G. Roma, and W. M. Keyes, Age-associated infl ammation inhibits epidermal stem cell function, Genes Dev., 26, 2144–2153 (2012). (69) A . Mojallal, C. Lequeux, C. Shipkov, P. Breton, J. L Foyatier, F. Braye, and O. Damour, Improvement of skin quality after fat grafting: clinical observation and an animal study, Plast. Reconstr. Surg., 124, 765–774 (2009). (70) S . Zhang, Z. Dong, Z. Peng, and F. Lu, Anti-aging effect of adipose-derived stem cells in a mouse model of skin aging induced by D-galactose, PloS One, 9, e97573 (2014). (71) H . J. Kim and J.-S. Park, Usage of human mesenchymal stem cells in cell-based therapy: advantages and disadvantages, Dev. Reprod., 21, 1–10 (2017). (72) T . Quan and G. J. Fisher, Role of age-associated alterations of the dermal extracellular matrix micro- environment in human skin aging: a mini-review, Gerontology, 61, 427–434 (2015). (73) L . F. Lau, CCN1/CYR61: the very model of a modern matricellular protein, Cell Mol. Life Sci., 68, 3149 (2011). (74) R . Kafi , H. S. R. Kwak, W. E. Schumacher, S. Cho, V. N. Hanft, T. A. Hamilton, A. L. King, J. D. Neal, J. Varani, and G. J. Fisher, Improvement of naturally aged skin with vitamin a (retinol), Arch. Dermatol., 143, 606–612 (2007). (75) K . Rehman and M. H. Zulfakar, Recent advances in gel technologies for topical and transdermal drug delivery, Drug Dev. Ind. Pharm., 40, 433–440 (2014). (76) A . -R. Denet, R. Vanbever, and V. Préat, Skin electroporation for transdermal and topical delivery, Adv. Drug Deliv. Rev., 56, 659–674 (2004). (77) G. Sahu, S. Sahu, H. Sharma, and A. K. Jha, A review of current and novel trends for anti-ageing formulation, Int. J. Pharm. Chem. Biol. Sci., 4, 118–125 (2014). (78) N. A. Patel, N. J. Patel, and R. P. Patel, Formulation and evaluation of curcumin gel for topical ap- plication, Pharm. Dev. Technol., 14, 83–92 (2009). (79) W. R. Pfi ster and D. S. Hsieh, Permeation enhancers compatible with transdermal drug delivery sys- tems. Part I: selection and formulation considerations, Med. Device Technol., 1, 48–55 (1990). (80) I. Rodríguez Cruz, C. Domínguez-Delgado, J. Escobar-Chávez, M. López-Cervantes, and R. Díaz- Torres, Physical Penetration Enhancers: an Overview (Bentham Science Publishers, Sharja, United Arab Emirates, 2016), pp. 3–34. (81) Y. Chen, M. Wang, and L. ang, Biomaterials as novel penetration enhancers for transdermal and der- mal drug delivery systems, Drug Deliv., 20, 199–209 (2013). (82) Y.-W. H o u, M.-H. Chan, H.-R. Hsu, B. R. Liu, C.-P. Chen, H.-H. Chen, and H.-J. Lee, Transdermal delivery of proteins mediated by non-covalently associated arginine-rich intracellular delivery pep- tides, Exp. Dermatol., 16, 999–1006 (2007). (83) Y. Z. L i , Y. S. Quan, L. Zang, M. N. Jin, F. Kamiyama, H. Katsumi, A. Yamamoto, and S. Tsutsumi, Transdermal delivery of insulin using trypsin as a biochemical enhancer, Biol. Pharm. Bull., 31, 1574– 1579 (2008). (84) S. A. Nasrollahi, S. Fouladdel, C. Taghibiglou, E. Azizi, and E. S. Farboud, A peptide carrier for the delivery of elastin into fi broblast cells, Int. J. Dermatol., 51, 923–929 (2012). (85) Ge X., Wei M., He S., and Yuan W.-E., Advances of non-ionic surfactant vesicles (niosomes) and their application in drug delivery, Pharmaceutics, 11, 55 (2019). (86) B. Maherani, E. Arab-Tehrany, M. R Mozafari, C. Gaiani, and M. Linder, Liposomes: a review of manufacturing techniques and targeting strategies, Curr. Nanosci., 7, 436–452 (2011). (87) A. Laouini, C. Jaafar-Maalej, I. Limayem-Blouza, S. Sfar, C. Charcosset, and H. Fessi, Preparation, charac- terization and applications of liposomes: state of the art, J. Colloid Sci. Biotechnol., 1, 147–168 (2012). (88) L. Tavano, “Liposomal gels in enhancing skin delivery of drugs,” in Percutaneous Penetration Enhanc- ers Chemical Methods in Penetration Enhancement: Drug Manipulation Strategies and Vehicle Ef- fects, N. Dragicevic and H. I. Maibach. Eds. (Springer Berlin Heidelberg: Berlin and Heidelberg, 2015), pp. 329–341.
JOURNAL OF COSMETIC SCIENCE 340 (89) M. F. Peralta, M. L. Guzmán, A. P. Pérez, G. A. Apezteguia, M. L. Fórmica, E. L. Romero, M. E. Olivera, and D. C. Carrer, Liposomes can both enhance or reduce drugs penetration through the skin, Sci. Rep., 8, 13253–13253 (2018). ( 9 0) V. Aparajita and P. Ravikumar, Liposomes as carriers in skin ageing, Int. J. Curr. Pharm. Res., 6, 1–7 (2014). ( 9 1) M.-J. Tsai, Y.-B. Huang, J.-W. Fang, Y.-S. Fu, and P.-C. Wu, Preparation and evaluation of submi- cron-carriers for naringenin topical application, Int. J. Pharm., 481, 84–90 (2015). ( 9 2) C. Caddeo, M. Manca, M. Matos, G. Gutierrez, O. Diez Sales, J. Peris, I. Usach, Fernàndez-Busquets X., A. Fadda, and M. Manconi, Functional response of novel bioprotective poloxamer-structured ves- icles on infl amed skin, Nanomedicine, 13, 1127–1136 (2017). (9 3 ) R. Bartelds, M. H. Nematollahi, T. Pols, M. C. A. Stuart, A. Pardakhty, G. Asadikaram, and B. Poolman, Niosomes, an alternative for liposomal delivery, PloS One, 13, e0194179 (2018). (9 4 ) D. Morrow, P. McCarron, A. Woolfson, and R. Donnelly, Innovative strategies for enhancing topical and transdermal drug delivery, Open Drug Deliv. J., 1, 36–59 (2007). (9 5 ) A. Manosroi, P. Jantrawut, T. Akihisa, W. Manosroi, and J. Manosroi, In vitro and in vivo skin anti- aging evaluation of gel containing niosomes loaded with a semi-purifi ed fraction containing gallic acid from Terminalia chebula galls, Pharm. Biol., 49, 1190–1203 (2011). (9 6 ) N. K. Gupta and V. Dixit, Development and evaluation of vesicular system for curcumin delivery, Arch. Dermatol. Res., 303, 89–101 (2011). (9 7 ) V. R. Yasam, S. L. Jakki, J. Natarajan, and G. Kuppusamy, A review on novel vesicular drug delivery: proniosomes, Drug Deliv., 21, 243–249 (2014). (9 8 ) M. Zhang, L. Dang, F. Guo, X. Wang, W. Zhao, and R. Zhao, Coenzyme Q10 enhances dermal elastin expression, inhibits IL-1α production and melanin synthesis in vitro, Int. J. Cosmet. Sci., 34, 273–279 (2012). (99) N . Yadav, S. Nanda, G. Sharma, and O. Katare, Systematically optimized coenzyme q10-loaded novel proniosomal formulation for treatment of photo-induced aging in mice: characterization, biocompat- ibility studies, biochemical estimations and anti-aging evaluation, J. Drug Target., 24, 257–271 (2016). (100) P. Verma and K. Pathak, Therapeutic and cosmeceutical potential of ethosomes: an overview, J. Adv. Pharm. Technol. Research (JAPTR), 1, 274–282 (2010). (101) M. U. Sakthi, D. R. Devi, and B. V. Hari, Vesicular mode of drug delivery: a promising approach for anti-infective therapy, Int. J. Chem. Sci., 12, 797–814 (2014). (102) C. D. Kaur and S. Saraf, Topical vesicular formulations of Curcuma longa extract on recuperating the ultraviolet radiation–damaged skin, J. Cosmet. Dermatol., 10, 260–265 (2011). (103) P. S. Saraf, G. Jeswani, D. C. D. Kaur, and S. Saraf, Development of novel herbal cosmetic cream with Curcuma longa extract loaded transfersomes for antiwrinkle effect, Afr. J. Pharm. Pharmacol., 5, 1054– 1062 (2011). (104) N. Yadav, S. Khatak, and U. S. Sara, Solid lipid nanoparticles-a review, Int. J. Appl. Pharm, 5, 8–18 (2013). (105) N. Naseri, H. Valizadeh, and P. Zakeri-Milani, Solid lipid nanoparticles and nanostructured lipid car- riers: structure, preparation and application, Adv. Pharm. Bull., 5, 305 (2015). (106) E. S. Farboud, S. A. Nasrollahi, and Z. Tabbakhi, Novel formulation and evaluation of a Q10-loaded solid lipid nanoparticle cream: in vitro and in vivo studies, Int. J. Nanomed., 6, 611–617 (2011). (107) Y. Yue, H. Zhou, G. Liu, Y. Li, Z. Yan, and M. Duan, The advantages of a novel CoQ10 delivery sys- tem in skin photo-protection, Int. J. Pharm., 392, 57–63 (2010). (108) H. S. Kwon H. S., J. H. Lee, G. M. Kim, and J. M. Bae, Effi cacy and safety of retinaldehyde 0.1% and 0.05% creams used to treat photoaged skin: a randomized double-blind controlled trial, J. Cosmet. Dermatol., 17, 471–476 (2018). (109) K. Nayak, S. S. Katiyar, V. Kushwah, and S. Jain, Coenzyme Q10 and retinaldehyde co-loaded nanostructured lipid carriers for effi cacy evaluation in wrinkles, J. Drug Target., 26, 333–344 (2018). (110) C . Angerhofer and P. Giacomoni, The use of natural compounds and botanicals in the development of anti-aging skin care products, Skin Aging Handbook, An Integrated Approach to Biochemistry and Product Development, A volume in Personal Care & Cosmetic Technology, William Andrew Inc., Norwich, NY (2009), pp. 205–263. (111) L . Wang, W. Lee, Y. R. Cui, G. Ahn, and Y.-J. Jeon, Protective effect of green tea catechin against urban fi ne dust particle-induced skin aging by regulation of NF-κB, AP-1, and MAPKs signaling pathways, Environ. Pollut., 252, 1318–1324 (2009).
Previous Page Next Page