651 WHAT CAUSES CURLY HAIR? (8) M. L. Ryder. Hair (Institute of Biology: Studies in Biology) (Edward Arnold, London, 1973). (9) P. F. Scholander, V. Walters, R. Hock, and L. Irving, Body insulation of some arctic and tropical mammals and birds, Biol. Bull., 99, 225–236 (1950). (10) A. Thomas, D. P. Harland, S. Clerens, S. Deb-Choudhury, J. A. Vernon, G. L. Krsinic, R. J. Walls, C. D. Cornellison, J. E. Plowman, and J. M. Dyer, Interspecies comparison of morphology, ultrastructure and proteome of mammalian keratin fibers of similar diameter, J. Agric. Food Chem., 60, 2434–2446 (2012). (11) R. A. Quinlan, E. H. Bromley, and E. Pohl, A silk purse from a sow’s ear—bioinspired materials based on α-helical coiled coils, Curr. Opin. Cell Biol., 32, 131–137 (2015). (12) L. Cera, G. M. Gonzalez, Q. Liu, S. Choi, C. O. Chantre, J. Lee, R. Gabardi, M. C. Choi, K. Shin, and K. K. Parker, A bioinspired and hierarchically structured shape-memory material, Nat. Mater., 20(2), 242–249 (2021). (13) D. P. Harland, J. A. Vernon, J. L. Woods, S. Nagase, T. Itou, K. Koike, D. A. Scobie, A. J. Grosvenor, J. M. Dyer, and S. Clerens, Intrinsic curvature in wool fibres is determined by the relative length of orthocortical and paracortical cells, J. Exp. Biol., 221(Pt 6), jeb172312 (2018). (14) B. Tsang, Modelling the Mechanisms Governing Crimp in Wool (University of Canterbury, Christchurch, New Zealand, 2004). (15) B. P. Baxter, M. A. Brims, and T. B. Taylor, Description and performance of the Optical Fibre Diameter Analyser (OFDA), J. Text. Inst., 83, 507–526 (1992). (16) G. Loussouarn, A.-L. Garcel, I. Lozano, C. Collaudin, C. Porter, S. Panhard, D. Saint-Léger, and R. de La Mettrie, Worldwide diversity of hair curliness: a new method of assessment, Int. J. Dermatol., 46(Suppl. 1), 2–6 (2007). (17) J. E. Plowman and D. P. Harland, “Fibre ultrastructure,” in The Hair Fibre: Proteins, Structure and Development. J. E. Plowman, D. P. Harland, and S. Deb-Choudhury, Eds. (Springer Nature, Singapore, 2018), pp. 3–13. (18) J. W. Hearle, A critical review of the structural mechanics of wool and hair fibres, Int. J. Biol. Macromol., 27, 123–138 (2000). (19) E. Cloete, N. P. Khumalo, J. C. Van Wyk, and M. N. Ngoepe, Systems approach to human hair fibers: interdependence between physical, mechanical, biochemical and geometric properties of natural healthy hair, Front. Physiol., 10, 112 (2019). (20) Y. S. Lim, D. P. Harland, and T. L. Dawson Jr, Wanted, dead and alive why a multidisciplinary approach is needed to unlock hair treatment potential, Exp. Dermatol., 28, 517–527 (2019). (21) S. J. Gould and R. C. Lewontin, The spandrels of San Marco and the Panglossian paradigm: a critique of the adaptationist programme, Proc. R. Soc. Lond. B, 205, 581–598 (1979). (22) E. Cadieu, M. W. Neff, P. Quignon, K. Walsh, K. Chase, H. G. Parker, B. M. Vonholdt, A. Rhue, A. Boyko, A. Byers, A. Wong, D. S. Mosher, A. G. Elkahloun, T. C. Spady, C. André, K. Gordon Lark, M. Cargill, C. D. Bustamante, R. K. Wayne, and E. A. Ostrander, Coat variation in the domestic dog is governed by variants in three genes, Science, 326(5949), 150–153 (2009). (23) E. Cloete, N. P. Khumalo, and M. N. Ngoepe, The what, why and how of curly hair: a review, Proc. Math Phys. Eng. Sci., 475(2231), 20190516 (2019). (24) S. Thibaut, O. Gaillard, P. Bouhanna, D. W. Cannell, and B. A. Bernard, Human hair shape is programmed from the bulb, Br. J. Dermatol., 152, 632–638 (2005). (25) H. Yang, R. C. Adam, Y. Ge, Z. L. Hua, and E. Fuchs, Epithelial-mesenchymal micro-niches govern stem cell lineage choices, Cell, 169, 483–496.e13 (2017). (26) G. C. Priestley, Histological studies of the skin follicle types of the rat with special reference to the structure of the Huxley layer, J. Anat., 101, 491–504 (1967). (27) G. E. Westgate, R. S. Ginger, and M. R. Green, The biology and genetics of curly hair, Exp. Dermatol., 26, 483–490 (2017). (28) S. L. Koch, M. D. Shriver, and N. G. Jablonski, Variation in human hair ultrastructure among three biogeographic populations, J. Struct. Biol., 205, 60–66 (2019).
652 JOURNAL OF COSMETIC SCIENCE (29) F. J. Wortmann, G. Wortmann, and T. Sripho, Why is hair curly? Deductions from the structure and the biomechanics of the mature hair shaft, Exp. Dermatol., 29(3), 366–372 (2020). (30) J. E. Plowman, D. P. Harland, A. M. O. Campos, S. Rocha e Silva, A. Thomas, J. A. Vernon, C. van Koten, C. Hefer, S. Clerens, and A. M. de Almeida, The wool proteome and fibre characteristics of three distinct genetic ovine breeds from Portugal, J. Proteomics, 225, 103853 (2020). (31) M. Horio and T. Kondo, Crimping of wool fibers, Text. Res. J., 23, 373–386 (1953). (32) D. P. Harland and A. J. McKinnon, “Macrofibril formation,” in The Hair Fibre: Proteins, Structure and Development. J. E. Plowman, D. P. Harland, and S. Deb Choudhury. Eds. (Springer, New York, NY, 2018), pp. 155–169. (33) D. P. Harland, R. J. Walls, J. A. Vernon, J. M. Dyer, J. L. Woods, and F. Bell, Three-dimensional architecture of macrofibrils in the human scalp hair cortex, J. Struct. Biol., 185, 397–404 (2014). (34) J. L. Woods, D. P. Harland, J. A. Vernon, G. L. Krsinic, and R. J. Walls, Morphology and ultrastructure of antler velvet hair and body hair from red deer (Cervus elaphus), J. Morphol., 272, 34–49 (2011). (35) W. A. Munro and G. A. Carnaby, Wool fibre crimp, Part I: The effects of micro-fibrillar geometry, J. Text. Inst., 90, 123–136 (1999). (36) D. P. Harland, J. P. Caldwell, R. J. Walls, J. L. Woods, J. A. Vernon, W. G. Bryson, H. Liu, and G. L. Krsinic, Australian Merino Wool Structural Database. Australian Wool Innovation Limited, Christchurch, New Zealand, 2006 Accessed Compact Disc. August 2021. (37) A. N. Parbhu, W. G. Bryson, and R. Lal, Disulfide bonds in the outer layer of keratin fibers confer higher mechanical rigidity: correlative nano-indentation and elasticity measurement with an AFM, Biochemistry, 38, 11755–11761 (1999). (38) J. P. Caldwell, R. J. Walls, J. A. Vernon, J. L. Woods, and W. G. Bryson, Eds., “Atomic force microscopy of some cellular components of merino wool fibres,” in Proceedings of the 11th International Wool Research Conference (4–9 September 2005), K. D. Byrne, P. Duffield, P. Myers, S. Scouller, and J. A. Swift. Eds. (University of Leeds, Department of Colour & Polymer Chemistry, United Kingdom, 2005), p. 180FWS. (39) W. G. Bryson, D. P. Harland, J. P. Caldwell, J. A. Vernon, R. J. Walls, J. L. Woods, S. Nagase, T. Itou, and K. Koike, Cortical cell types and intermediate filament arrangements correlate with fiber curvature in Japanese human hair, J. Struct. Biol., 166(1), 46–58 (2009). (40) W. G. Bryson, D. P. Harland, J. P. Caldwell, J. A. Vernon, R. J. Walls, J. L. Woods, S. Nagase, T. Itou, and K. Koike, Electron microscopy and tomography reveal that sodium 2-naphthalene sulfonate incorporated into perming solutions swells and tilts trichocyte intermediate filaments causing straightening of curly Japanese human hair, Int. J. Cosmet. Sci., 41(2), 132–146 (2019). (41) A. Fratini, B. C. Powell, P. I. Hynd, R. A. Keough, and G. E. Rogers, Dietary cysteine regulates the levels of mRNAs encoding a family of cysteine-rich proteins of wool, J. Invest. Dermatol., 102, 178–185 (1994). (42) S. W. Li, H. S. Ouyang, G. E. Rogers, and C. S. Bawden, Characterization of the structural and molecular defects in fibres and follicles of the merino felting lustre mutant, Exp. Dermatol., 18, 134–142 (2009). (43) Z. Yu, J. E. Plowman, P. Maclean, J. E. Wildermoth, R. Brauning, J. C. McEwan, and N. J. Magbool, Ovine keratome: identification, localisation and genomic organisation of keratin and keratin-associated proteins, Anim. Genet., 49, 361–370 (2018). (44) Z. Yu, J. E. Wildermoth, O. A. M. Wallace, S. W. Gordon, N. J. Maqbool, P. H. MacLean, A. J. Nixon, and A. J. Pearson, Annotation of sheep keratin intermediate filament genes and their patterns of expression, Exp. Dermatol., 20(7), 582–588 (2011). (45) Z.-D. Yu, S. W. Gordon, J. E. Wildermoth, O. A. M. Wallace, A. J. Nixon, and A. J. Pearson, Identification of novel wool keratin intermediate filament genes in sheep skin, Proc. N. Z. Soc. Anim. Prod., 70, 222–228 (2010). (46) J. E. Plowman, D. P. Harland, D. R. Scobie, D. O’Connell, A. Thomas, P. H. Brorens, M. Richena, E. Meenken, A. J. Phillips, J. A. Vernon, and S. Clerens, Differences between ultrastructure and protein composition in straight hair fibres, Zoology, 133, 40–53 (2019).
Purchased for the exclusive use of nofirst nolast (unknown) From: SCC Media Library & Resource Center (library.scconline.org)