685 THE MATRIX REVISITED limits of conventional thinking with regard to hair structure, but perhaps there are some accepted ideas within the literature that might provide an explanation. Specifically, the existence of different types of cortical cells containing differing quantities of matrix protein has been reported (39). Conceptually, then, a higher proportion of high-sulfur cortical cells would presumably enhance dry-state mechanics while perhaps impacting other related properties, such as diffusion rates into hair fibers. The pursuit of these nonstandard ideas will be the subject of future research activities. REFERENCES (1) M. Feughelman, A two-phase structure for keratin fibers, Text. Res. J., 29(3), 223–228 (1959). (2) D. Persaud and Y. K. Kameth, Torsional method for evaluating hair damage and performance of hair care ingredients, J. Cosmet. Sci., 55(Suppl), S65–S77 (2004). (3) S. Breakspear, B. Noecker, and C. Popescu, Relevance and evaluation of hydrogen and disulfide bond contribution to the mechanics of hard α-keratin fibers, J. Phys. Chem. B, 123(21), 4505−4511 (2019). (4) C. Popescu and H. Höcker, Chapter 4. Cytomechanics of hair. Basics of the mechanical stability, Int. Rev. Cell Mol. Biol., 277(C), 137–156 (2009). (5) J. C. Maxwell, The Bakerian Lecture. On the viscosity or internal friction of air and other gases, Philos. Trans. R. Soc. London, 156, 249–268 (1866). (6) W. Voigt, Kompendium der theoretischen Physik, Band I (De Gruyter, Leipzig, Germany, 1895). (7) A. Tobolsky and H. Eyring, Mechanical properties of polymeric materials. J. Chem. Phys., 11, 125–135 (1943). (8) G. Halsey, H. J. White, Jr., and H. Eyring, Mechanical properties of textiles, I, Text. Res. J., 15(9), 295–311 (1945). (9) C. E. Reese and H. Eyring, Mechanical properties and the structure of hair, Text. Res. J., 20(11), 743–753 (1950). (10) L. Peters and J. B. Speakman, The visco-elastic properties of wool fibers, Text. Res. J., 18(9), 511–518 (1948). (11) M. Feughelman, Natural protein fibers, J. Appl. Polym. Sci., 83(3), 489–507 (2002). (12) F.-J. Wortmann and S. De Jong, Nonlinear viscoelastic behavior of wool fibers in a single step relaxation test. J. Appl. Polym. Sci., 30(5), 2195–2206 (1985). (13) R. D. B. Fraser and D. A. D. Parry, “Trichocyte keratin-associated proteins (KAPs)”, in The Hair Fibre: Proteins, Structure and Development, J. E. Plowman, D. Harland, and S. Deb-Choudhury, Eds. (Springer Nature Singapore Pty Ltd., Singapore, 2018), pp. 71–86. Advances in Experimental Medicine and Biology, vol. 1054. (14) T. W. Mitchell and M. Feughelman, The torsional properties of single wool fibers. Part I: Torque-twist relationships and torsional relaxation in wet and dry fibers. Text. Res. J., 30(9), 662–667, (1960). (15) C. Popescu, Mechanomics, Princeton, New Jersey, September 18–19 2014. 6th International Conference on Applied Hair Science: TRI Princeton. (16) A. H. Nissan, H-bond dissociation in hydrogen bond dominated solids. Macromolecules, 9(5), 840–850 (1976). (17.) Y. Kajiura, S. Watanabe, T. Itou, K. Nakamura, A. Iida, K. Inoue, N. Yagi, Y. Shinohara, and Y. Amemiya, Structural analysis of human hair single fibres by scanning microbeam SAXS. J. Struct. Biol., 155(3), 438–444 (2006). (18) S. Breakspear, The Contribution of Non-Covalent Strategic Bonds to the Nanomechanical Properties of Hair, Redbank, New Jersey, June 8–9 2016, 7th International Conference on Applied Hair Science: TRI Princeton.
686 JOURNAL OF COSMETIC SCIENCE (19) W. Voigt, Ueber die Beziehung zwischen den beiden Elasticitätsconstanten isotroper Körper, Ann. Phys., 274(12), 573–587 (1889). (20) A. Reuss, Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle. Z. Angew. Math. Mech., 9(1), 49–58 (1929). (21) C. Popescu and F.-J. Wortmann, HPDSC evaluation of cosmetic treated human hair, Rev. Roum. Chim., 48(12), 981–986 (2003). (22) C. Popescu and C. Gummer, DSC of human hair: a tool for claim support or incorrect data analysis? Int. J. Cosmet. Sci., 38(5), 433–439 (2016). (23) F.-J. Wortmann, G. Wortmann, and C. Popescu, Linear and nonlinear relations between DSC parameters and elastic moduli for chemically and thermally treated human hair, J. Therm. Anal. Calorim., 140, 2171–2178 (2020). (24) A. R. Haly and J. W. Snaith, Differential thermal analysis of wool–the phase-transition endotherm under various conditions, Text. Res. J., 37(10), 898–907 (1967). (25) J. Cao and F. Leroy, Depression of the melting temperature by moisture for alpha-form crystallites in human hair keratin, Biopolymers, 77(1), 38–43 (2005). (26) M. L. Williams, R. F. Landel, and J. D. Ferry, The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids, J. Am. Chem. Soc., 77(14), 3701–3707 (1955). (27) C. Popescu and F.-J. Wortmann, The Behaviour of Keratins at High Temperature, Krakow, Poland, 27–31 Aug 2006, 9th European Symposium on Thermal Analysis and Calorimetry: Polish Society of Thermal Analysis and Calorimetry. (28) W. G. Crewther, The stress–strain characteristics of animal fibers after reduction and alkylation, Text. Res. J., 35(10), 867–877 (1965). (29) W. G. Crewther, The effects of disaggregating agents on the stress–strain relationship for wool fibers, Text. Res. J., 42(2), 77–85 (1972). (30) B. M. Chapman, A mechanical model for wool and other keratin fibers, Text. Res. J., 39(12), 1102–1109 (1969). (31) M. Baias, D. E. Demco, C. Popescu, R. Fechete, C. Melian, B. Blümich, and M. Möller, Thermal denaturation of hydrated wool keratin by 1 H solid-state NMR, J. Phys. Chem. B, 113(7), 2184–2192 (2009). (32) D. Istrate, C. Popescu, M. Er Rafik, and M. Möller, The effect of pH on the thermal stability of fibrous hard alpha-keratins, Polym. Degrad. Stab., 98(2), 542–549 (2013). (33) D. Istrate, C. Popescu, and M. Möller, Nonisothermal kinetics of hard α-keratin thermal denaturation, Macromol. Biosci., 9(8), 805–812 (2009). (34) M. Baias, D. E. Demco, D. Istrate, C. Popescu, B. Blümich, and M. Möller, Morphology and molecular mobility of fibrous hard α-keratins by 1 H, 13 C, and 129 Xe NMR, J. Phys. Chem. B, 113(35), 12136–12147 (2009). (35) M. Kadir, X. Wang, B. Zhu, J. Liu, D. Harland, and C. Popescu, The structure of the “amorphous” matrix of keratins, J. Struct. Biol., 198(2), 116–123 (2017). (36) M. Feughelman, A model for the mechanical properties of the α-keratin cortex, Text. Res. J., 64(4), 236–239 (1994). (37) J. W. S. Hearle, A critical review of the structural mechanics of wool and hair fibres, Int. J. Biol. Macromol., 27(2), 123–138 (2000). (38) M. Kadir, Phonon and Spin Diffusion in Single Hair Fiber: Structure of the Amorphous Matrix of Keratins, Redbank, New Jersey, June 8–9 2016, 7th International Conference on Applied Hair Science: TRI Princeton. (39) D. Harland, Hair’s multi-scalar architecture, Redbank, New Jersey, June 8–9 2016, 7th International Conference on Applied Hair Science: TRI Princeton.
Purchased for the exclusive use of nofirst nolast (unknown) From: SCC Media Library & Resource Center (library.scconline.org)