77 NATURAL ACTIVE INGREDIENTS AND SKIN HYDRATION (39) H. Kara, H. Filiz Ayyıldız, İ. Tarhan, F. Erci, and M. Raşit Bakır, “Bioactive phytochemicals from almond (Prunus dulcis) oil processing by-products,” in Bioactive Phytochemicals from Vegetable Oil and Oilseed Processing By-Products, M.F.R.H. Ed. (Springer, New York, 2022), pp. 1–25 (40) D.E. Jin, S.K. Park, C.H. Park, T.W. Seung, and H.J. Heo, Nutritional compositions of three traditional Actinidia (Actinidia arguta) cultivars improved in Korea, J. Korean Soc. Food Sci. Nutr., 43(12), 1942– 1947 (2014). (41) M.E. Lane, Skin penetration enhancers, Int. J. Pharm., 447(1–2), 12–21 (2013). (42) P.C. Anderson and J.G. Dinulos, Are the new moisturizers more effective? Curr. Opin. in Pediatr., 21(4), 486–490 (2009). (43) R. Sarkar, I. Podder, N. Gokhale, S. Jagadeesan, and V.K. Garg, Use of vegetable oils in dermatology: an overview, Int. J. Dermatol., 56(11), 1080–1086 (2017). (44) J.W. Fluhr, J. Kao, S.K. Ahn, K.R. Feingold, P.M. Elias, and M. Jain, Generation of free fatty acids from phospholipids regulates stratum corneum acidification and integrity, J. Invest. Dermatol., 117(1), 44–51 (2001). (45) C.C. Miller and V.A. Ziboh, Induction of epidermal hyperproliferation by topical n-3 polyunsaturated fatty acids on guinea pig skin linked to decreased levels of 13- hydroxyoctadecadienoic acid (13-hode), J. Invest. Dermatol., 94(3), 353–358 (1990). (46) R.C. Barcelos, C. de Mello-Sampayo, C.T. Antoniazzi, H.J. Segat, H. Silva, J.C. Veit, J. Piccolo, T. Emanuelli, M.E. Bürger, B. Silva-Lima, and L.M. Rodrigues, Oral supplementation with fish oil reduces dryness and pruritus in the acetone-induced dry skin rat model, J. Dermatol. Sci., 79(3), 298–304 (2015). (47) G.K. Menon, K.R. Feingold, A.H. Moser, B.E. Brown, and P.M. Elias, De novo sterologenesis in the skin, II. Regulation by cutaneous barrier requirements, J. Lipid Res., 26(4), 418–427 (1985). (48) G. Grubauer, K.R. Feingold, and P.M. Elias, Relationship of epidermal lipogenesis to cutaneous barrier function, J. Lipid Res., 28(6), 746–752 (1987). (49) S. Agatonovic-Kustrin and D.W. Morton, Cosmeceuticals derived from bioactive substances found in marine algae, Journal of Oceanography and Marine Research, 1(2), 106 (2013). (50) Y. Koo, E.-J. Choi, J. Lee, H.-J. Kim, G. Kim, and S.H. Do, 3D printed cell-laden collagen and hybrid scaffolds for in vivo articular cartilage tissue regeneration, J. Ind. Eng. Chem., 66, 343–355 (2018). (51) H. Hong, H. Fan, M. Chalamaiah, and J. Wu, Preparation of low-molecular-weight, collagen hydrolysates (peptides): current progress, challenges, and future perspectives, Food Chem., 301, 125222 (2019). (52) Y. Shigemura, K. Iwai, F. Morimatsu, T. Iwamoto, T. Mori, C. Oda, T. Taira, E.Y., Park, Y. Nakamura, and K. Sato, Effect of prolyl-hydroxyproline (pro-hyp), a food-derived collagen peptide in human blood, on growth of fibroblasts from mouse skin, J. Agric. Food Chem., 57(2), 444–449 (2009). (53) V. Zague, V. de Freitas, M. da Costa Rosa, G.Á. de Castro, R.G. Jaeger, and G.M. Machado-Santelli, Collagen hydrolysate intake increases skin collagen expression and suppresses matrix metalloproteinase 2 activity, J. Med. Food., 14(6), 618–624 (2011). (54) N. Matsuda, Y.-i. Koyama, Y. Hosaka, H. Ueda, T. Watanabe, T. Araya, S. Irie, and K. Takehana, Effects of ingestion of collagen peptide on collagen fibrils and glycosaminoglycans in the dermis, J. Nutr. Sci. Vitaminol., 52(3), 211–215 (2006). (55) J. Shimizu, N. Asami, A. Kataoka, F. Sugihara, N. Inoue, Y. Kimira, M. Wada, and H. Mano, Oral collagen-derived dipeptides, prolyl-hydroxyproline and hydroxyprolyl-glycine, ameliorate skin barrier dysfunction and alter gene expression profiles in the skin, Biochem. Biophys. Res. Commun., 456(2), 626–630 (2015). (56) A. León-López, A. Morales-Peñaloza, V.M. Martínez-Juárez, A. Vargas-Torres, D.I. Zeugolis, and G. Aguirre-Álvarez, Hydrolyzed collagen—sources and applications, Molecules, 24(22), 4031 (2019). (57) S.-B. Han, B. Won, S.-C. Yang, and D.-H. Kim, Asterias pectinifera derived collagen peptide- encapsulating elastic nanoliposomes for the cosmetic application, J. Ind. Eng. Chem., 98, 289–297 (2021). (58) K. S. Silvipriya, K. Krishna Kumar, A.R. Bhat, B. Dinesh Kumar, A. John, and P. Lakshmanan, Collagen: animal sources and biomedical application, J. Appl. Pharma. Sci., 5(3),123–127 (2015).
78 JOURNAL OF COSMETIC SCIENCE (59) J.B. Guillerme, C. Couteau, and L. Coiffard, Applications for marine resources in cosmetics, Cosmetics, 4(3), 1–15 (2017). (60) P.H. Li, W.C. Lu, Y.J. Chan, W.C. Ko, C.C. Jung, D.T. Le Huynh, and Y.-X. Ji, Extraction and characterization of collagen from sea cucumber (Holothuria cinerascens) and its potential application in moisturizing cosmetics, Aquaculture, 515(168), 1–8 (2020). (61) E.G. Brunt and J.G. Burgess, The promise of marine molecules as cosmetic active ingredients, Int. J. Cosmet. Sci., 40(1), 1–15 (2018). (62) D. Swatschek, W. Schatton, J. Kellermann, W.E.G Müller, and J. Kreuter, Marine sponge collagen: isolation, characterization and effects on the skin parameters surface-pH, moisture and sebum, Eur. J. Pharm. Biopharm., 53(1), 107–113 (2002). (63) L. Uppala, A review on active ingredients from marine sources used in cosmetics, SOJ Pharmacy &Pharmaceutical Sciences, 2(3), 1–3 (2015). (64) L. Liu, G. Pohnert, and D. Wei, Extracellular metabolites from industrial microalgae and their biotechnological potential, Mar. Drugs, 14(10), 1–19 (2016). (65) W. Levasseur, P. Perré, and V. Pozzobon, A review of high value-added molecules production by microalgae in light of the classification, Biotechnol. Adv., 41, 107545 (2020). (66) S.K. Kim, Y.D. Ravichandran, S.B. Khan, and Y.T. Kim, Prospective of the cosmeceuticals derived from marine organisms, Biotechnol. Bioproc. Eng., 13, 511–523 (2008). (67) R.P. Rastogi and A., Incharoensakdi, Characterization of UV-screening compounds, mycosporine-like amino acids, and scytonemin in the cyanobacterium Lyngbya sp. CU2555, FEMS Microbiol. Ecol., 87(1), 244–256 (2014). (68) Y. Bu, J. Elango, J. Zhang, B. Bao, R. Guo, K. Palaniyandi, J.S. Rohinson, J. Geevaretuam, J.M. Regenstein, and W. Wu, Immunological effects of collagen and collagen peptide from blue shark cartilage on 6T-CEM cells, Process Biochem., 57, 219–227 (2017). (69) E. Jeevithan, J. Zhang, B. Bao, W. Shujun, R. JeyaShakila, and W.H. Wu, Biocompatibility assessment of type-II collagen and its polypeptide for tissue engineering: effect of collagen’s molecular weight and glycoprotein content on tumor necrosis factor (Fas/Apo-1) receptor activation in human acute T-lymphocyte leukemia cell line, RSC Adv., 6(17), 14236–14246 (2016b). (70) L. Chen, B. Bao, N. Wang, J. Xie, and W. Wu, Oral administration of shark type II collagen suppresses complete Freund’s adjuvant-induced rheumatoid arthritis in rats, Pharmaceuticals, 5(4), 339–352 (2012). (71) E. Jeevithan, C. Sanchez, J.E.M.S. de Val, Y. Henrotin, S. Wang, K.S.C.M. Motaung, R. Guo, C. Wang, J. Robinson, J.M. Regenstein, B. Bao, and W. Wu, Cross-talk between primary osteocytes and bone marrow macrophages for osteoclastogenesis upon collagen treatment, Sci. Rep., 8(1), 5318 (2018). (72) E. Jeevithan, J. Zhang, B. Bao, K. Palaniyandi, S. Wang, W. Wenhui, and J.S. Robinson, Rheological, biocompatibility and osteogenesis assessment of fish collagen scaffold for bone tissue engineering, Int. J. Biol. Macromol., 91, 51–59 (2016a). (73) E. Jeevithan, J. Zhang, N. Wang, L. He, B. Bao, and W. Wu, Physico-chemical, antioxidant and intestinal absorption properties of whale shark type-II collagen based on its solubility with acid and pepsin, Process Biochem., 50(3), 463–472 (2015). (74) J. Tao, Y.Q. Zhao, C.F. Chi, and B. Wang, Bioactive peptides from cartilage protein hydrolysate of spotless smoothhound and their antioxidant activity in vitro, Mar. Drugs, 16(4), 100–118 (2018). (75) W. Li, N. Terauchi, D. Meng, N. Miyamoto, N. Tsutsumi, K. Ura, and Y. Takagi, Antioxidant and fibroblast-activating activities of the by-product of skate chondroitin extractive production, Sust. Chem. Ph., 23, 100499 (2021b). (76) X. Pan, Y.Q. Zhao, F.Y. Hu, and B. Wang, Preparation and identification of antioxidant peptides from protein hydrolysate of skate (Raja porosa) cartilage, J. Funct. Foods, 25, 220–230 (2016). (77) K. Ajisaka, Y. Oyanagi, T. Miyazaki, and Y. Suzuki, Effect of the chelation of metal cation on the antioxidant activity of chondroitin sulfates, Biosci. Biotechnol. Biochem., 80(6), 1179–1185 (2016).
Purchased for the exclusive use of nofirst nolast (unknown) From: SCC Media Library & Resource Center (library.scconline.org)