641 THE ROLE OF THE SCALP MICROBIOME IN HEALTH AND DISEASE primary eukaryotes on skin and have many faces. They can be a commensal, a pathogen, or a mutualist. We need to first understand healthy homeostasis and what healthy skin actually is before we can progress. We need to understand how we are going to intervene and that classic intervention technologies may frequently fail. We must be more creative and clearer about how we investigate skin health if we will figure out the holistic system and understand what is actually going on in human skin health and disease. FUNDING This work was supported by funding from Agency for Science, Technology and Research (A*STAR) and A*STAR BMRC EDB IAF-PP grants – H17/01/a0/004 “Skin Research Institute of Singapore” and H18/01a0/016 “Asian Skin Microbiome Program. REFERENCES (1) Schwartz, J. R., Cardin, C. M., and Dawson, T. L. Dandruff and seborrheic dermatitis. Textb. Cosmet. Dermatology, 259–272 (2004). (2) Zeeuwen, P. L. Microbiome dynamics of human epidermis following skin barrier disruption. Genome Biol., 13, R101 (2012). (3) Ramasamy, S. D., Barnard, E., Dawson, T. L., and Li, H. The role of the skin microbiota in acne pathophysiology. Br. J. Dermatol., 181, 691–699 (2019). (4) Schommer, N. N. and Gallo, R. L. Structure and function of the human skin microbiome. Trends Microbiol., 21, 660–668 (2013). (5) Huttenhower, C. Structure, function and diversity of the healthy human microbiome. Nature, 486, 207–214 (2012). (6) Gallo, R. L. Human skin is the largest epithelial surface for interaction with microbes. J. Invest. Dermatol., 137, 1213–1214 (2017). (7) Grice, E. A. and Dawson, T. L. Host–microbe interactions: Malassezia and human skin. Curr. Opin. Microbiol., 40, 81–87 (2017). (8.) Grice, E. A. Topographical and temporal diversity of the human skin microbiome. Science, 324, 1190– 1192 (2009). (9) Theelen, B. Malassezia ecology, pathophysiology, and treatment. Med. Mycol., 10–25 (2017). (10) Grice, E. A. and Segre, J. A. The skin microbiome. Nat. Rev. Microbiol., 9, 244–253 (2011). (11) Vijaya Chandra, S. H., Srinivas, R., Dawson, T. L., and Common, J. E. Cutaneous Malassezia: Commensal, pathogen, or protector? Front. Cell. Infect. Microbiol., 10, 1–16 (2021). (12) Warner, R. R., Schwartz, J. R., Boissy, Y., and Dawson, T. L. Dandruff has an altered stratum corneum ultrastructure that is improved with zinc pyrithione shampoo. J. Am. Acad. Dermatol., 45, 897–903 (2001). (13) Schwartz, J. R., Deangelis, Y. M., and Dawson, T. L. Dandruff and seborrheic dermatitis: A head scratcher. Dandruff Seborrheic Dermat., 1–26 (2010). (14) Guého, E., Midgley, G., and Guillot, J. The genus Malassezia with description of four new species. Antonie Van Leeuwenhoek, 69, 337–355 (1996). (15) DeAngelis, Y. M. Three etiologic facets of dandruff and seborrheic dermatitis: Malassezia fungi, sebaceous lipids, and individual sensitivity. J. Investig. Dermatol. Symp. Proc., 10, 295–297 (2005). (16) O’Neill, A. M. and Gallo, R. L. Host-microbiome interactions and recent progress into understanding the biology of acne vulgaris. Microbiome, 6, 177 (2018).
642 JOURNAL OF COSMETIC SCIENCE (17) Ro, B. I. and Dawson, T. L. The role of sebaceous gland activity and scalp microfloral metabolism in the etiology of seborrheic dermatitis and dandruff. J. Investig. Dermatol. Symp. Proc., 10, 194–197 (2005). (18) Koch, R. Ueber den augenblicklichen Stand der bakteriologischen Choleradiagnose. Zeitschrift f{ü}r Hyg. und Infekt., 14, 319–338 (1893). (19) Pirofski, L. A. and Casadevall, A. The damage-response framework of microbial pathogenesis and infectious diseases. Adv. Exp. Med. Biol., 635, 135–146 (2008). (20) Vanderwyk, R. and Roia, F. The relationship between dandruff and the microbial flora of the human scalp. J. Soc. Cosmet. Chem., 15, 761–768 (1964). (21) Gosse, R. and Vanderwyk, R. The relationship of a nystatin-resistant strain of Pityrosporum ovale to dandruff. J. Soc. Cosmet. Chem., 20, 603–6 (1969). (22) Vanderwyk, R. and Hechemy, K. A comparison of the bacterial and yeast flora of the human scalp and their effect upon dandruff production. J. Soc. Cosmet. Chem., 639, 629–639 (1967). (23) Chng, K. R. Whole metagenome profiling reveals skin microbiome-dependent susceptibility to atopic dermatitis flare. Nat. Microbiol., 1, 16106 (2016). (24) Poh, S. E. Identification of Malassezia furfur secreted aspartyl protease 1 (MfSAP1) and its role in extracellular matrix degradation. Front. Cell. Infect. Microbiol., 10, 1–10 (2020). (25) Casadevall, A., Pirofski, L. A., Romani, L., Bistoni, F., and Puccetti, P. Microbial virulence results from the interaction between host and microorganism. Trends Microbiol., 11, 157–159 (2003).
Purchased for the exclusive use of nofirst nolast (unknown) From: SCC Media Library & Resource Center (library.scconline.org)