194 JOURNAL OF THE SOCIETY OF COSMETIC CHEMISTS visible skin photodamage assessed by total tumor area in hairless mice. Topically ap- plied agents that protect skin from chronic UVR-induced damage also inhibit elevation of basal ODC activity. In humans with no history of skin cancer, skin sites chronically exposed to solar radiation did not show consistently higher basal epidermal ODC activi- ties. These data suggest that constitutively elevated levels of epidermal ODC in chroni- cally UVR-exposed skin are specifically associated with signs of neoplasia. Photo- damaged skin not exhibiting signs of neoplasia has normal levels of epidermal ODC activity. It would be interesting to determine human ODC activity in normal-ap- pearing skin adjacent to solar-induced premalignant and malignant skin cancers where elevated basal ODC activity would be expected. ACKNOWLEDGMENTS We gratefully acknowledge the expertise of Daniel P. Hannon in grading the human skin sites for photodamage. We also thank Hill Top Research (Cincinnati, OH) for their capable assistance in conducting the human experiments. REFERENCES (14) (15) (1) L. H. Kligman, F. J. Akin, and A.M. Kligman, Prevention of ultraviolet damage to the dermis of hairless mice by sunscreens, J. Invest. Dermatol., 78, 181-189 (1982). (2) W. M. Sams, J. G. Smith, and P. G. Burk, The experimental production ofelastosis with ultraviolet light, J. Invest. Dermatol., 43, 467-471 (1964). (3) J. M. Knox, E. G. Cockerrel, and R. G. Freeman, Etiological factors and premature aging,J. Am. Med. Assoc., 179, 630-636 (1962). (4) A. M. Kligman, Early destructive effect of sunlight on human skin, J. Am. Med. Assoc., 210, 2377-2380 (1969). (5) R. M. Lavker, Structural alteration in exposed and unexposed aged skin, J. Invest. Dermatol., 73, 59-66 (1979). (6) D. L. Bissett, D. P. Hannon, and T. V. Orr, An animal model of solar-aged skin: Histological, physical, and visible changes in UV-irradiated hairless mouse skin, Photochem. Photobiol., 46, 367-378 (1987). (7) L. H. Kligman and A.M. Kligman, "Cutaneous Photoaging by Ultraviolet Radiation," in Models in Dermatology, H. I. Maibach and N.J. Lowe, Eds. (Karger, Basel, 1985), Vol. I, pp. 59-68. (8) K. J. Johnston, A. I. Oikarinen, N.J. Lowe, and J. Uitto, "Ultraviolet-Induced Connective Tissue Changes in the Skin: Models for Actinic Damage and Cutaneous Aging," in Models in Dermatology, H. I. Maibach and N.J. Lowe, Eds. (Karger, Basel, 1985), Vol. I, pp. 69-76. (9) J. Scotto, T. R. Fears, and J. F. Fraumeni, Incidence of Non-Melanoma Skin Cancer in the United States, Washington, DC: US Department of Health and Human Services, 1981: (NIH)82-2433. (10) A. E. Pegg, Polyamine metabolism and its importance in neoplastic growth and as a target for chemotherapy, Cancer Res., 48, 759-774 (1988). (11) T. G. O'Brien, The induction of ornithine decarboxylase as an early, possibly obligatory, event in mouse skin carcinogenesis, Cancer Res., 36, 2644-2653 (1976). (12) T. J. Slaga, Multistage skin carcinogenesis: A useful model for the study of the chemoprevention of cancer, Acta Pharmacol. Toxicol., 55 (Suppl. 2), 107-124 (1984). (13) H. J. Niggli and R. R6thlisberger, Cyclobutane-type pyrimidine photodimer formation and induc- tion of ornithine decarboxylase in human skin fibroblasts after UV irradiation, J. Invest. Dermatol., 91, 579-584 (1988). U. Lichti, G. T. Bowden, E. Patterson, T. Ben, and S. H. Yuspa, Germicidal ultraviolet light induces ornithine decarboxylase in mouse epidermal cells and modifies the induction caused by phorbol ester tumor promoters, Photochem. Photobiol., 32, 177-181 (1980). U. Lichti, S. H. Yuspa, and H. Hennings, "Ornithine and S-Adenosylmethionine Decarboxylase in
UV-INDUCED SKIN TUMORS 195 (24) (25) (30) (31) (32) (33) (34) (35) (36) Mouse Epidermal Cell Cultures Treated With Tumor Promoters," in Mechanisms of Tumor Promotion and Carcinogenesis, T. J. Slaga, A. Sivak, and R. K. Boutwell, Eds. (Raven Press, New York, 1978), pp. 221-232. 16) D. H. Russell, "Ornithine Decarboxylase as a Marker of Carcinogenesis," in Handbook of Carcinogen Testing, H. A. Milman, and E. K. Weisburger, Eds. (Noyes Pub., Park Ridge, NJ, 1985), pp. 464- 481. 17) D. H. Russell, Ornithine decarboxylase: A key regulatory enzyme in normal and neoplastic growth, Drug Metab. Reviews, 16, 1-88 (1985). 18) G. G. Hillebrand, M. S. Winslow, M. J. Benzinger, D. A. Heitmeyer, and D. L. Bissett, Acute and chronic ultraviolet radiation induction of epidermal ornithine decarboxylase activity in hairless mice, Cancer Res., 50, 1580-1584 (1990). (19) T. G. O'Brien, R. C. Simsiman, and R. K. Boutwell, Induction of the polyamine-biosynthetic en- zymes in mouse epidermis by tumor promoting agents, Cancer Res., 35, 1662-1670 (1975). (20) T. G. O'Brien, R. C. Simsiman, and R. K. Boutwell, Induction of the polyamine-biosynthetic en- zymes in mouse epidermis and their specificity for tumor promotion, Cancer Res., 35, 2426-2433 (1975). (21) A. K. Verma, N.J. Lowe, and R. K. Boutwell, Induction of mouse epidermal ornithine decarbox- ylase activity and DNA synthesis by ultraviolet light, Cancer Res., 39, 1035-1040 (1979). (22) N. Lowe, A. K. Verma, and R. K. Boutwell, Ultraviolet light induces epidermal ornithine decar- boxylase activity, J. Invest. Dermatol., 71, 417-418 (1978). (23) R. L. Binder, M. E. Volpenhein, and A. A. Motz, Characterization of the induction of ornithine decarboxylase by benzoyl peroxide in SENCAR mouse epidermis, Carcinogenesis, 10, 2351-2357 (1989). P. Bohlen, J. Grove, M. F. Beya, J. Koch-Weser, M. H. Henry, and E. Grosshans, Skin polyamine levels in psoriasis: The effect of dithranol therapy, Eur. J. Clin. Invest., 8, 215-218 (1978). D. H. Russell, W. L. Combest, E. A. Duell, M. A. Stawiski, T. F. Anderson, and J. J. Voorhees, Glucocorticoid inhibits elevated polyamine biosynthesis in psoriasis, J. Invest. Dermatol., 71, 177-181 (1978). (26) N. J. Lowe, J. Breeding, and D. H. Russell, Cutaneous polyamines in psoriasis, Br. J. Dermatol., 107, 21-25 (1982). (27) G. Scalabrino and M. E. Ferioli, Degree of enhancement of polyamine biosynthetic decarboxylase activities in human tumors: A useful new index of degree of malignancy, Cancer Detection and Preven- tion, 8, 11-16 (1985). (28) D. L. Bissett, G. G. Hillebrand, and D. P. Harmon, The hairless mouse as a model to evaluate photoprotective materials, Photodermatol., 6, 228- 233 (1989). (29) D. L. Bissett, R. Chatterjee, and D. P. Harmon, Photoprotective effect of superoxide-scavenging anti-oxidants against ultraviolet radiation-induced chronic skin damage in the hairless mouse, Photo- dermatol. Photoimmunol. Photomed., 7, 56-62 (1990). D. L. Bissett, R. Chatterjee, and D. P. Harmon, Chronic ultraviolet radiation-induced increase in skin iron and the photoprotective effect of topically applied iron chelators, Photochem. Photobiol., 49s, 6 ls (1989). B. Halliwell, Superoxide-dependent formation of hydroxy radicals in the presence of iron salts, FEBS Lett., 96, 238-242 (1978). H. S. Black, Potential involvement of free radical reactions in ultraviolet light-mediated cutaneous damage. Photochem. Photobiol., 46, 213-221 (1987). J. Fitzpatrick, Soleil et peau, Med. Esthet., 2, 33-34 (1975). R. P. Arthur and B. S. Walter, The epidermal biopsy, Arch. Derm., 80, 133-135 (1959). G. Scalabrino, P. Pigatto, M. E. Ferioli, D. Modena, M. Puerari, and A. Caru, Levels of activity of the polyamine biosynthetic decarboxylases as indicators of degree of malignancy of human cutaneous epitheliomas,J. Invest. Dermatol., 74, 122-124 (1980). N. A. Shaath, Encyclopedia of UV absorbers for sunscreen products, Cosmet. Toilet., 102, 21-36 (1987).
Purchased for the exclusive use of nofirst nolast (unknown) From: SCC Media Library & Resource Center (library.scconline.org)





















































