154 JOURNAL OF THE SOCIETY OF COSMETIC CHEMISTS considerably reduced all aspects of photoaging that were examined. Importantly, dam- age progression over time, from 10 MPD to 16 MPD, was especially moderated in the SPF-18 treated mice. These data support the concept that broad-spectrum protection should include UVA I absorption and that SPFs higher than 15 to 30 are needed to moderate the accumulation of photodamage over the many decades of human sun exposure. ACKNOWLEDGMENTS We wish to acknowledge the expert contributions of Marilyn J. Crosby for animal treatment, Dorothy Campbell for histologic preparations, and William Witmer for photography. REFERENCES (1) D. S. Snyder and M. May, Ability of PABA to protect mammalian skin from ultraviolet light-induced skin tumors and actinic damage, J. Invest. Dermatol., 65, 543-546 (1975). (2) L. H. Kligman, F. J. Akin, and A.M. Kligman, Sunscreens prevent ultraviolet photocarcinogenesis, J. Am. Acad, Dermatol., 3, 30-35 (1980). (3) L. H. Kligman, F. J. Akin, and A.M. Kligman, Prevention of ultraviolet damage to the dermis of hairless mice by sunscreens, J. Invest. Dermatol., 78, 181-189 (1982). (4) D. L. Bissett, D. P. Hannon, and T. V. Orr, An animal model of solar-aged skin: Histologic, physical and visible changes in UV-irradiated mouse skin, Photochem. Photobid. 46, 367-378 (1987). (5) S. R. Plastow, J. H. Harrison, and A. R. Young, Early changes in dermal collagen of mice exposed to chronic UVB irradiation and the effects of a UVB sunscreen, J. Invest. Dermatol. 91, 590-592 (1988). (6) L. H. Kligman, F. J. Akin, and A. M. Kligman, Sunscreens promote repair of ultraviolet radiation- induced dermal damage, J. Invest. Dermatol., 81, 98-101 (1983). (7) J. A. Harrison, S. L. Walter, S. R. Plastow, M.D. Bart, and A. R. Young, Sunscreens with low sunprotection factor inhibit ultraviolet A and B photoaging in the skin of the hairless mouse, Photodermatol. Photoimmunol. Photochem., 8, 12-20, (1991). (8) A. Fourtanier, J. Labat-Robert, P. Kern, C. Berrebi, A.M. Gracia, and B. Boyer, In vivo evaluation of photoprotection against chronic ultraviolet-A irradiation by a new sunscreen Mexoryl © SX, Pho- tochem. Photobiol., 55, 549-560 (1992). (9) L. H. Kligman and P. Zheng, The protective effect of a broad-spectrum sunscreen against chronic UVA radiation in hairless mice: A histologic and ultrastructural assessment, J. Soc. Cosmet. Chem., 45, 21-33 (1994). (10) L. H. Kligman, F. J. Akin, and A.M. Kligman, The contributions of UVA and UVB to connective tissue damage in hairless mice, J. Invest. Dermatol., 84, 272-276 (1985). (11) L. H. Kligman and R. M. Sayre, An action spectrum for ultraviolet induced elastosis in hairless mice: Quantification of elastosis by image analysis, Photochem. Photobiol. 53, 237-242 (1991). (12) Food and Drug Administration, Proposed monograph for sunscreens, Fed. Reg., 43, 38206-38269 (1978). (13) L. H. Kligman, Luna's technique: A beautiful stain for elastin, Am. J. Dermatopath., 3, 199-201 (1981). (14) R. H. Lesnik, L. H. Kligman, and A.M. Kligman, Agents that cause enlargement of sebaceous glands in hairless mice. II. Ultraviolet radiation, Arch. Dermatol. Res , 284, 106-108 (1992). (15) L. H. Kligman, Topical retinoic acid reduces tumorigenesis in hairless mice previously exposed to solar simulating radiation, Photochem. Photobid., 61S, 22S (abstract)(1995). (16) K. H. Kaidbey, The photoprotective potential of the new superpotent sunscreens, J. Am. Acad. Dermatol., 22, 449-452 (1990). (17) R. M. Lavker, G. F. Gerberick, D. Veres, C. J. Irwin, and K. H. Kaidbey, Ct mulative effects from
BROAD-SPECTRUM SUNSCREENS 15 5 repeated exposures to suberythemal doses of UVB and UVA in human skin, J. Am. Acad. Dermatol., 32, 53-62 (1995). (18) F. Urbach, Ultraviolet A transmission by modern sunscreens: Is there a real risk? Photodermatol. Photoimmunol., Photoreed., 9, 237-241 (1992/1993). (19) L. H. Kligman and IV[. Gebre, Biochemical changes in hairless mouse skin collagen after chronic exposure to UVA radiation, Photochem. Photobiol. 54, 233-237 (1991). (20) K. Scharffetter, IV[. Wlaschek, A. Hogg, K. Bolsen, A. Schothorst, G. Goerz, T. Krieg, and G. Plewig, UVA radiation induces collagenase in human dermal fibroblasts in vitro and in vivo, Arch. Dermatol. Res., 283, 506-511 (1991). (21) M. Wlaschek, K. Bolsen, G. Herrmann, A. Schwarz, F. Wilmroth, P. C. Heinrich, G. Goerz, and K. Scharffetter-Kochanek, UVA-induced autocrine stimulation of fibroblast-derived collagenase by IL-6: A possible mechanism in dermal photodamage?J. Invest. Dermatol., 101, 164-168 (1993). (22) P. Zheng and L. H. Kligman, UVA-induced ultrastructural changes in hairless mouse skin: A comparison to UVB-induced damage, J. Invest. Dermatol., 100, 194-199 (1993). (23) L. H. Kligman, "UVA-Induced Biochemical Changes in Hairless Mouse Skin Collagen: A Contrast to UVB Effects," in Biological Responses to Ultraviolet A Radiation, F. Urbach, Ed (Valdenmar Pub- lishing Co., Overland Park, KS, 1992), pp. 209-215.
Previous Page Next Page