EFFECT OF Gp4G ON SKIN TISSUES 481 (14) A. H. Warner and F. J. Finamore, Isolation purifi cation and characterization of p1 p4-diguanosine 5′- tetraphosphate asymmetrical-pyrophosphohydrolase from brine shrimp eggs, Biochem., 4(8), 1568–1575 (1965). (15) A. H. Warner and J. S. Clegg, Diguanoside nucleotide metabolism and the survival of Artemia empryos during years of continuous anoxia, Eur. J. Biochem., 268, 1568–1576 (2001). (16) E. Rapaport and P. C. Zamecnik, Presence of diadenosine 5′,5″′-p1,p4-tetraphosphate (Ap4A) in mam- malian cells in levels varying widely with proliferative activity of the tiassue: A possible positive “pleio- typic activator,” Proc. Natl. Acad. Sci. USA, 73(11), 3984–3988 (1976). (17) L. Fort-Lacoste and M. Jeanjean, Association de diguanoside tetraphosphateet de derivés nicotiniques, destinées aux traitement des desódres capillaries, notamment pour lutter contre la chute de cheveux, Eur. Pat. Offi ce, EP 1 336 402 A1 (2003). (18) N. Kocever, I. Glavac, R. Injac, and S. Kreft, Comparison of capillary electrophoresis and high perfor- mance liquid chromatography for determination of fl avonoids in Achillea millefolium, J. Pharm. Biom. Anal., 46, 609–614 (2008). (19) N. Nenadis, O. Lazaridou, and M. Z. Tsimidou, Use of reference compounds in antioxidant activity assessment, J. Agric. Food. Chem., 55, 5452–5460 (2007). (20) D. Huang, B. Ou, and R. L. Prior, The chemistry behind antioxidant capacity assays, J. Agric. Food Chem., 53, 1841–1856 (2005). (21) P. J. Tsai, J. Mcintosh, P. Pearce, B. Camden, and B. R. Jorden, Anthocyanin and antioxidant capacity in Roselle (Hibiscus Sabdarifa L.) extract, Food Res. Int., 35, 351–356 (2002). (22) Y. Milner, J. Sudnik, M. Filippi, M. Kizoulis, M. Kashgarin, and K. Stenn, Exogen, shedding phase of the hair growth cycle: Characterization of a mouse model, J. Invest. Dermatol., 119, 639–644 (2002). (23) D. Rival, S. Bonnet, B. Shom, and E. Perrier, A Hibiscus abelmoschus seed extract as a protective active ingredient to favore FGF-2 activity in skin, Int. J. Cosmet. Sci., 31, 419–426 (2009). (24) J. T. Headington, Transverse microscopic anatomy of the human scalp: A basis for a morphometric approach to disorders of the hair follicle, Arch. Dermatol., 120, 449–456 (1984). (25) M. Lehtokari, P. Nikkola, and J. Paatero, Determination of ATP from compost using the fi refl y biolu- minescence technique, Eur. J. Appl. Microbiol. Biotechol., 17, 187–190 (1983). (26) H. D. Dellman and J. A. Eurell, Textbook of Veterinary Histology, 5th Ed. (Williams and Wilkins, Baltimore, 1998), Ch. 3,6. (27) D. Oh, Validating proteins as functional cosmetic ingredients—An hGH case, SOFW-J, Int. J. App. Sci., 135, 2–14 (2009). (28) P. Kaur, Interfollicular stem cells: Identifi cation, challenges, potential, J. Invest. Dermatol., 126, 1450– 1458 (2006). (29) G. Cotsarelis, Epithelial stem cells: A folliculocentric view, J. Invest. Dermatol., 126, 1459–1468 (2006). (30) L. Alonso and E. Fuchs, Stem cells of the skin epithelium, Proc. Natl. Acad. Sci. USA, 100, 11830– 11835 (2003). (31) H. Cho, H. Lee, E. Kim, K. Park, M. Chang, J. Kim, C. Lee, and D. Oh, Analysis of the effects of hGH using living skin equivalents, Tiss. Eng. Regener. Med., 4, 406–410 (2007). (32) D. L. du Cros, R. G. LeBaron, and J. R. Couchman, Association of versican with dermal matrices and its potential role in hair follicle development and cycling, J. Invest. Dermatol., 105(3), 426–431 (1995). (33) L. C. Junqueira, G. S. Montes, J. E. Martins, and P. P. Joazeiro, Dermal collagen distribution: A his- tochemical and ultrastructural study, Histochem., 79, 397–403 (1983). (34) T. Kukita, K. Hata, A. Kukita, and T. Iijima, Laminin, a major basement membrane component of the blood vessel, as a negative regulator of osteoclastogenesis, Calcif. Tiss. Int., 63, 140–142 (1998). (35) F. Tuckett and G. M. Morriss-Kay, The distribution of fi bronectin, laminin and entactinin in the neurulating rat embryo studied by indirect immunofl uorescence, Embryol. Exp. Morph., 94, 95–112 (1986). (36) M. G. Kinsella, S. L. Bressler, and T. N. Wight, The regulated synthesis of versican, decorin, and bi- glycan: Extracellular matrix proteoglycans that infl uence cellular phenotype, Crit. Rev. Eukaryot. Gene Expr., 14(3), 203–234 (2004). (37) T. N. Wight, Versican: A versatile extracellular matrix proteoglycan in cell biology, Curr. Opin. Cell. Biol., 14, 617–623 (2002). (38) T. Soma, M. Tajima, and J. Kishimoto, Hair cycle-specifi c expression of versican in human hair follicles, J. Dermatol. Sci., 39, 147–154 (2005). (39) B. P. Toole, Hyaluronan is not just a good! J. Clin. Invest., 106(3), 335–336 (2000).
JOURNAL OF COSMETIC SCIENCE 482 (40) B. P. Toole, “Glycosaminoglycans in Morphogenesis,” in Cell Biology of Extracellular Matrix., E. D. Hay, Ed. (Plenum Press. New York, 1981), pp 259–294. (41) W. Sheng, G. Wang, D. P. La Pierre, J. Wen, Z. Deng, C. K. Wong, D. Y. Lee, and B. B. Yang, Versican mediates mesenchymal–epithelial transition, Mol. Biol. Cell., 17(4), 2009–2020 (2006). (42) S. San Martin, M. Soto-Suazo, and T.M.T. Zorn, Distribution of versican and hyaluronan in the mouse uterus during decidualization, Braz. J. Med. Bio. Res., 36: 879X (2003). (43) R. M. Salgado, L. P. Capelo, R. R. Favaro, J. D. Glazier, J. D. Aplin, and T. M. Zorn, Hormone- regulated expression and distribution of versican in mouse uterine tissues, Reprod. Biol. Endocrinol., 7(1), 60 (2009). (44) J. Kishimoto, R. Ehama, L. Wu, S. Jiang, N. Jiang, and R. Burgenson, Selective activation of the versi- can promoter by epithelial–mesenchymal interactions during hair follicle development, Proc. Natl. Acad. Sci. USA, 96, 7336–7341 (1999). (45) J. R. Couchman, J. L. King, and K. J. McCarthy, Distribution of two basement membrane proteogly- cans through hair follicle development and the hair growth cycle in the rat, J. Invest. Dermatol., 94, 65–70 (1990). (46) J. R. Couchman, K. J. McCarthy, and A. Woods, Proteoglycans and glycoproteins in hair follicle devel- opment and cycling, Ann. N. Y. Acad. Sci., 642, 243–251 (1991). (47) E. Bodó, T. Bíró, A. Telek, G. Czifra, Z. Griger, B. I. Tóth, A. Mescalchin, T. Ito, A. Bettermann, L. Kovács, and R. Paus, A hot new twist to hair biology: Involvment of vanilloid receptor-1 (VR1/TRPV1) signaling in human hair growth control, Am. J. Pathol., 166, 985–998 (2005). (48) M. F. Renart, J. Renart, M. G. Sillero, and A. Sillero, Guanosine monophosphate reductase from Artemia salina: Inhibition by xanthosine monophosphate and activation by diguanosine tetraphosphate, Biochem- istry, 15(23), 4962–4966 (1976). (49) P. Vollmayer, T. Clair, J. W. Goding, K. Sano, J. Servos, and H. Zimmermann, Hydrolysis of diadenos- ine polyphosphates by nucleotide pyrophosphatases/phosphodi-esterases, Eur. J. Biochem., 270, 2971– 2978 (2003). (50) P. P. Dzeja and A. Terzic, Phosphotransfer networks and cellular energetic, J. Exp. Biol., 206, 2039– 2047 (2003). (51) B. Ludwig, E. Bender, S. Arnold, M. Hüttemann, I. Lee, and B. Kadenbach, Cytochrome c oxidase and the regulation of oxidative physphorylation, Chem. Biochem., 2(6), 392–403 (2001). (52) C. S. Henry, L. J. Broadbelt, and V. Hatzimanikatis, Thermodynamics-based metabolic fl ux analysis, Biophys. J., 92, 1792–1805 (2007). (53) I. Loef, M. Stitt, and P. Geigenberger, Increased levels of adenine nucleotides modify the interaction between starch synthesis and respiration when adenine is supplied to discs from growing potato tubers, Planta, 212, 782–791 (2001). (54) S. Thomas, and D. A. Fell, A control analysis exploration of the role of ATP utilization in glycolytic-fl ux control and glycolytic-metabolite-concentration regulation, Eur. J. Biochem., 258, 956–967 (1998). (55) M. Klingenberg, Uncoupling proteins—How do they work and how are they regulated, IUBMB Life, 52, 175–179 (2001). (56) A. P. Babenko, G. Gonzalez, L. Aguilar-Bryan, and J. Bryan, Reconstituted human cardiac KATP chan- nels: Functional identity with the native channels from the sarcolemma of human ventricular cells, Circ. Res., 83(11), 1132–1143(1998). (57) H. E. Burrel, B. Wlodarski, B. J. Foster, K. A. Buckley, G. R. Sharpe, J. M. Quayle, A. W. M. Simpson, and J. A. Gallagher, Human keratinocytes release ATP and utilize three mechanisms for nucleotide in- tercorversion at the cell surface, J. Biol. Chem., 280, 29667–29676 (2005).
Purchased for the exclusive use of nofirst nolast (unknown) From: SCC Media Library & Resource Center (library.scconline.org)







































































