496 JOURNAL OF COSMETIC SCIENCE (53) M. Voll and P. Kleinshmit, “Carbon, 6. Carbon black,” in Ullmann’s Encyclopedia of Industrial Chemistry (John Wiley, Weinheim, Germany, 2012), pp. 1–22. (54) O. Fleming, Rosenstein J, The Ultimate Guide to Clean Beauty. 2020, accessed September 28, 2020, https://www.harpersbazaar.com/beauty/skin-care/a28352553/clean-beauty/. (55) T. Maoka, Carotenoids as natural functional pigments, J. Nat. Med., 74, 1–16 (2020). (56) F. Delgado-Vargas and O. Paredes-Lopez, Natural Colorants for Food and Nutraceutical Uses (CRC Press, Boca Raton, FL, 2002). (57) D. B. Rodriguez-Amaya, Carotenoids and Food Preparation: The Retention of Provitamin A Carotenoids in Prepared, Processed and Stored Foods. 1997, accessed September 28, 2020, https://pdf.usaid.gov/ pdf_docs/Pnacb907.pdf. (58) B. B. Rodriguez-Amaya, A Guide to Carotenoid Analysis in Foods (ILSI Press, Washington, DC, 2001). (59) D. B. Rodriguez-Amaya, Food Carotenoids: Chemsitry, Biology and Technology (John Wiley, Chichester, England, 2015). (60) D. B. Rodriquez-Amaya, Natural food pigments and colorants, Curr. Opin. Food. Sci., 7, 20–26 (2016). (61) J. G. Provesi and E. R. Amante, “Carotenoids in pumpkin and impact of processing treatments and storage,” in Processing and Impact on Active Components in Food, V. Preedy. Eds. (Academic Press, London, 2002), pp. 71–80. (62) L. Ngamwonglumlert, S. Devahastin, and N. Chiewchan, Natural colorants: pigment stability and extraction yield enhancement via utilization of appropriate preptreatment and extraction methods, Crit. Rev. Food. Sci. Nutr., 57, 3243–3259 (2017). (63) C. Soukoulis and T. Bohn, A comprehensive the overview on the micro-and nano-technological encapsulation advances for enhancing the chemical stability and bioavailability of carotenoids, Crit. Rev. Food. Sci. Nutr., 58, 1–36 (2018). (64) J. B. Eun, A. Maruf, P. R. Das, and S. H. Nam, A review of encapsulation of carotenoids using spray drying and freeze drying, Crit. Rev. Food. Sci. Nutr., 90, 1–27 (2019). (65) J. Smith, Annatto Extracts., 67th JECFA—Chemical and Technical Assessment (CTA). 2006, accessed September 28, 2020, http://www.fao.org/3/a-at973e.pdf. (66) D. Lira-Morales, M. B. Montoya-Rojo, N. Varela-Bojorquez, M. Gonzalez-Ayon, R. Delez-De La Rocha, M. Verdugo-Perales, and J. A. Sanudo-Barajas, “Dietary fiber and lycopene from tomato processing,” in Plant Food By-Products: Industrial Relevance for Food Additives and Nutraceuticals, J. F. Ayala-Zavala, G. Gonzalez-Aguilar, and M. W. Siddiqui. Eds. (Apple Academic Press, New York, NY, 2018), pp. 255–288. (67) H. Ernst, Recent advances in industrial carotenoid synthesis, Pure. Appl. Chem., 74, 1369–1382 (2002). (68) Z. Olempska-Beer and P. M. Kuznesof, Lycopene Extract from Tomato—Chemical and Technical Assessment (CTA). 2009, accessed September 28, 2020, http://www.fao.org/fileadmin/templates/agns/ pdf/jecfa/cta/71/lycopene_extract_from_tomato.pdf. (69) Z. Olempska-Beer, Lycopene from Blakeslea Trispora—Chemical and Technical Assessment (CTA). 2006, accessed September 28, 2020, http://www.fao.org/fileadmin/templates/agns/pdf/jecfa/cta/67/ lycopene_trispora.pdf. (70) L. Bogacz-Radomska and J. Harasym, β-Carotene—properties and production methods, Food. Qual. Safety., 2, 69–74 (2018). (71) B. D. Ribeiro and D. W. Barreto, Technological aspects of β-Carotene production, Food Bioproc. Tech., 4, 693–701 (2011). (72) EFSA ANS Panel, Scientific opinion on the re-evalutaion of paprika extract (E160c) as a food additive, EFSA. J., 13, 1–52 (2015). (73) N. Koca, F. Karadeniz, and H. S. Burdurlu, Effect of pH on chlorophyll degradation and colour loss in blanched green peas, Food. Chem., 100, 609–615 (2007). (74) M. Gunawan and S. Barringer, Green color degradation of blanched broccoli (Brassica oleracea) due to acid and microbial growth, J. Food. Process. Preserv., 24, 253–263 (2000). (75) I. Viera, A. Parez-Galvez, and M. Roca, Green natural colorants, Molecules., 24, 1–17 (2019). (76) A. Mortensen, Carotenoids and other pigments as natural colorants, Pure. Appl. Chem., 78, 1477–1491 (2006). (77) G. A. F. Hendry and J. D. Houghton, Natural Food Colorants, 2nd Ed. (Springer-Science & Business Media, Glasgow, Scotland, 1996). (78) H. Inoue, H. Yamashita, K. Furuya, Y. Nonomura, N. Yoshioka, and S. Lib, Determination of copper(II) chlorophyllin by reversed-phase high-performance liquid chromatography, J. Chromatogr. A., 679, 99–104 (1994).
497 COSMETIC COLORATION: A REVIEW (79) A. Moretensen and A. Geppen, HPLC-MS analysis of the green food colorant sodium copper chlorophyllin, Innov. Food. Sci. Emerg. Technol., 8, 419–425 (2007). (80) B. Gandul-Rojas, M. Roca, and L. Gallardo-Guerrero, Detection of the color adulteration of green table olives with copper chlorophyllin complexes (E-141ii colorant), Food. Sci. Technol., 46, 311–318 (2012). (81) P. H. Hynnien, Mechanism of the allomerization of chlorophyll: inhibition of the allomerization by carotenoid pigments, Z. Naturforsch. B., 36, 1010–1016 (1981). (82) P. V. Hynnien, T. S. Leppakases, and M. Mesilaakso, Demethoxycarbonylation and oxidation of 132 (S/R)-hydroxy-chlorophyll a to 132-demethoxycarbonyl-132-oxo-chlorophyll a and Mg-purpurin-18 phytyl ester, Tetrahedron. Let., 47, 1663–1668 (2006). (83) R. W. Dapton, The history, chemistry and modes of action of carmine and related dyes, Biotech. Histochem., 82, 173–187 (2007). (84) J. Muller-Maatch and C. Gras, “18-The “Carmine Problem” and potential alternatives,” in Handbook on Natural Pigments in Food and Beverages, R. Carle and R. M. Schweiggert. Eds. (Woodhead Publishing, Duxford, 2016), pp. 385–428. (85) R. J. N. Frandsen, P. Khorsand-Jarmal, K. T. Kongstad, M. Nafisi, R. M. Kannangara, D. Staerk, F. T. Okkels, K. Binderup, B. Madsen, B. L. Moller, U. Thrane, and U. H. Mortensen, Heterologous production of the widely used natural food colorant carminic acid in Aspergillus nidulans, Sci. Rep., 8, 1–10 (2018). (86) H. E. Khoo, A. Azlan, S. T. Tang, and S. M. Lim, Anthocyanidins and anthocyanins: colored pigments as food, pharmaceutical ingredients, and the potential health benefits, Food. Nutr. Res., 61, 1–21 (2017). (87) F. J. Francis and P. C. Markakis, Food colorants: anthocyanins, Crit. Rev. Food. Sci. Nutr., 28, 273–314 (1989). (88) R. E. Wrolstad and C. A. Culver, Alternatives to those artificial FD&C food colorants, Annu. Rev. Food. Sci. Technol., 3, 59–77 (2012). (89) E. E. Meschter, Fruit color loss, effects of carbohydrates and other factors on strawberry products, J. Agric. Food. Chem., 1, 874–579 (1953). (90) P. Markaris, G. Livingston, and C. R. Fellers, Quantitative aspects of strawberry pigment degradation, J. Food. Sci., 22, 117–130 (1957). (91) R. Cortez, D. A. Luna-Vital, D. Margulis, and E. Gonzalez de Mejia, Natural pigments: stabilization methods of anthocyanins for food applications, Compr. Rev. Food. Sci. F., 16, 180–198 (2017). (92) D. B. Rodriquez-Amaya, “Betalains,” in Encyclopedia of Food Chemistry, L. Melton, F. Shahidi, and P. Verelis. Eds. (Elsevier, Amsterdam, the Netherlands, 2019), Vol. 1, pp. 35–39. (93) D. Devadiga and T. N. Ahipa, Betanin: a red-violet pigment – Chemistry and applications, Intech. Open. (2020). doi:10.5772/intechopen.88939. (94) K. M. Herbach, F. C. Stintzing, and R. Carle. Betalain stability and degradation – structural and chromatic aspects, J. Food. Sci., 71, R41–R50 (2006). (95) D. D. Castro-Enriquez, B. Montano-leyva, C. L. Del Toro-Sanchez, J. E. Juarez-Onofre, E. Carvajal- Millan, S. E. Burruel-Ibarra, Z. A. Tapia-hernandez, C. G. Barreras-Urbina, and F. Rodriquez-Felix, Stabilization of betalains by encapsulation – a review, J. Food. Sci. Technol., 57, 1587–1600 (2020). (96) J. L. D. Antigo, R. C. Bergamasco, and G. S. Madrona, Effect of pH on the stablity of red beet extract (Beta vulgaris l.) microcapsules produced by spray drying or freeze drying, Food. Sci. Technol., 38, 72–77 (2018). (97) J. Jankun, M. Wyganowska-Swiatkowska, K. Dettlaff, A. Jelinska, A. Surdacka, D. Watrobska- Swietlikowska, and E. Skrzypczak-Jankun, Determining whether curcumin degradation/condensation is actually biactivation (Review), Int. J. Mol. Med., 37, 1151–1158 (2016). (98) Y. J. Wang, M. H. Pang, A. L. Cheng, L. I. Lin, Y. S. Ho, C. Y. Hsieh, and J. K. Lin, Stability of curcumin in buffer solutions and characterization of its degradation products, J. Pharm. Biomed. Anal., 15, 1867–1876 (1997). (99) J. Zhu, K. Z. Sanidad, E. Sukamtoh, and G. Zhang, Potential roles of chemical degradation in the biological activities of curcumin, Food. Funct., 8, 907–614 (2017). (100) M. L. R. del Castillo, E. Lopez-Tobar, S. Sanchez-Cortes, G. Flores, and G. P. Blanch, Stabilization of curcumin against photodegradation by encapsulation in gamma-cyclodextrin: a study based on chromatographic and spectroscopic (Raman and UV–visible) data, Vib. Spectrosc., 81, 106–111 (2015). (101) D. M. Cano-Higuita, C. R. Malacrida, and V. R. N. Telis, Stability of curcumin microencapsulated by spray and freeze drying in binary and ternary matrices of maltodextrin, gum arabic and modified starch, J. Food. Process. Pres., 39, 2049–2060 (2015). (102) Society of Dyers and Colourists and American Association of Textile Chemists and Colourists, Chemical Constitutions in the Colour Index. 2013, accessed September 28, 2020, https://colour- index.com/cicn-explained.
Purchased for the exclusive use of nofirst nolast (unknown) From: SCC Media Library & Resource Center (library.scconline.org)