497 COSMETIC COLORATION: A REVIEW (79) A. Moretensen and A. Geppen, HPLC-MS analysis of the green food colorant sodium copper chlorophyllin, Innov. Food. Sci. Emerg. Technol., 8, 419–425 (2007). (80) B. Gandul-Rojas, M. Roca, and L. Gallardo-Guerrero, Detection of the color adulteration of green table olives with copper chlorophyllin complexes (E-141ii colorant), Food. Sci. Technol., 46, 311–318 (2012). (81) P. H. Hynnien, Mechanism of the allomerization of chlorophyll: inhibition of the allomerization by carotenoid pigments, Z. Naturforsch. B., 36, 1010–1016 (1981). (82) P. V. Hynnien, T. S. Leppakases, and M. Mesilaakso, Demethoxycarbonylation and oxidation of 132 (S/R)-hydroxy-chlorophyll a to 132-demethoxycarbonyl-132-oxo-chlorophyll a and Mg-purpurin-18 phytyl ester, Tetrahedron. Let., 47, 1663–1668 (2006). (83) R. W. Dapton, The history, chemistry and modes of action of carmine and related dyes, Biotech. Histochem., 82, 173–187 (2007). (84) J. Muller-Maatch and C. Gras, “18-The “Carmine Problem” and potential alternatives,” in Handbook on Natural Pigments in Food and Beverages, R. Carle and R. M. Schweiggert. Eds. (Woodhead Publishing, Duxford, 2016), pp. 385–428. (85) R. J. N. Frandsen, P. Khorsand-Jarmal, K. T. Kongstad, M. Nafisi, R. M. Kannangara, D. Staerk, F. T. Okkels, K. Binderup, B. Madsen, B. L. Moller, U. Thrane, and U. H. Mortensen, Heterologous production of the widely used natural food colorant carminic acid in Aspergillus nidulans, Sci. Rep., 8, 1–10 (2018). (86) H. E. Khoo, A. Azlan, S. T. Tang, and S. M. Lim, Anthocyanidins and anthocyanins: colored pigments as food, pharmaceutical ingredients, and the potential health benefits, Food. Nutr. Res., 61, 1–21 (2017). (87) F. J. Francis and P. C. Markakis, Food colorants: anthocyanins, Crit. Rev. Food. Sci. Nutr., 28, 273–314 (1989). (88) R. E. Wrolstad and C. A. Culver, Alternatives to those artificial FD&C food colorants, Annu. Rev. Food. Sci. Technol., 3, 59–77 (2012). (89) E. E. Meschter, Fruit color loss, effects of carbohydrates and other factors on strawberry products, J. Agric. Food. Chem., 1, 874–579 (1953). (90) P. Markaris, G. Livingston, and C. R. Fellers, Quantitative aspects of strawberry pigment degradation, J. Food. Sci., 22, 117–130 (1957). (91) R. Cortez, D. A. Luna-Vital, D. Margulis, and E. Gonzalez de Mejia, Natural pigments: stabilization methods of anthocyanins for food applications, Compr. Rev. Food. Sci. F., 16, 180–198 (2017). (92) D. B. Rodriquez-Amaya, “Betalains,” in Encyclopedia of Food Chemistry, L. Melton, F. Shahidi, and P. Verelis. Eds. (Elsevier, Amsterdam, the Netherlands, 2019), Vol. 1, pp. 35–39. (93) D. Devadiga and T. N. Ahipa, Betanin: a red-violet pigment Chemistry and applications, Intech. Open. (2020). doi:10.5772/intechopen.88939. (94) K. M. Herbach, F. C. Stintzing, and R. Carle. Betalain stability and degradation structural and chromatic aspects, J. Food. Sci., 71, R41–R50 (2006). (95) D. D. Castro-Enriquez, B. Montano-leyva, C. L. Del Toro-Sanchez, J. E. Juarez-Onofre, E. Carvajal- Millan, S. E. Burruel-Ibarra, Z. A. Tapia-hernandez, C. G. Barreras-Urbina, and F. Rodriquez-Felix, Stabilization of betalains by encapsulation a review, J. Food. Sci. Technol., 57, 1587–1600 (2020). (96) J. L. D. Antigo, R. C. Bergamasco, and G. S. Madrona, Effect of pH on the stablity of red beet extract (Beta vulgaris l.) microcapsules produced by spray drying or freeze drying, Food. Sci. Technol., 38, 72–77 (2018). (97) J. Jankun, M. Wyganowska-Swiatkowska, K. Dettlaff, A. Jelinska, A. Surdacka, D. Watrobska- Swietlikowska, and E. Skrzypczak-Jankun, Determining whether curcumin degradation/condensation is actually biactivation (Review), Int. J. Mol. Med., 37, 1151–1158 (2016). (98) Y. J. Wang, M. H. Pang, A. L. Cheng, L. I. Lin, Y. S. Ho, C. Y. Hsieh, and J. K. Lin, Stability of curcumin in buffer solutions and characterization of its degradation products, J. Pharm. Biomed. Anal., 15, 1867–1876 (1997). (99) J. Zhu, K. Z. Sanidad, E. Sukamtoh, and G. Zhang, Potential roles of chemical degradation in the biological activities of curcumin, Food. Funct., 8, 907–614 (2017). (100) M. L. R. del Castillo, E. Lopez-Tobar, S. Sanchez-Cortes, G. Flores, and G. P. Blanch, Stabilization of curcumin against photodegradation by encapsulation in gamma-cyclodextrin: a study based on chromatographic and spectroscopic (Raman and UV–visible) data, Vib. Spectrosc., 81, 106–111 (2015). (101) D. M. Cano-Higuita, C. R. Malacrida, and V. R. N. Telis, Stability of curcumin microencapsulated by spray and freeze drying in binary and ternary matrices of maltodextrin, gum arabic and modified starch, J. Food. Process. Pres., 39, 2049–2060 (2015). (102) Society of Dyers and Colourists and American Association of Textile Chemists and Colourists, Chemical Constitutions in the Colour Index. 2013, accessed September 28, 2020, https://colour- index.com/cicn-explained.
498 JOURNAL OF COSMETIC SCIENCE (103) J. Nikitakis and B. Lange, International Cosmetic Ingredient Dictionary and Handbook, 16th Ed. (Personal Care Products Council, Washington, DC, 2016). (104) R. M. Christie and J. L. Mackay, Metal salt azo pigments, Color. Technol., 124, 133–144 (2008). (105) R. Leach, The Printing Ink Manual, 4th Ed. (Springer Sceince & Business media, Heidelberg, Germany, 2012). (106) J. Knowlton and S. Pearce, Handbook of Cosmetic Science and Technology, 1st Ed. (Elsevier Science, Oxford, 1993). (107) P. Riley, “Chapter 5: Colouring materials used in decorative cosmetics and colour matching,” in Poucher’s Perfumes, Cosmetics and Soaps, 10th Ed., H. Butler. Eds. (Kluwer Academic Publishers, Amsterdam, the Netherlands, 2000), pp. 151–166. (108) Food and Drug Administration, Permanent listing of color additive lakes, Fed. Reg., 61, 8372–8417 (1996). (109) D. F. Anstead, “Chapter 6. Cosmetic colours,” in Handbook of Cosmetic Science: An Introduction to Principles and Applications, H. W. Hiboot. Eds. (Pergamon Press, Oxford, 1963), pp. 101–118. (110) G. Buxbaum and G. Pfaff, Industrial Inorganic Pigments, 3rd Ed. (Wiley-VCH, Weinheim, Germany, 2005).
Previous Page Next Page