495 COSMETIC COLORATION: A REVIEW (27) J. N. Barrows and H. Wallin, ALLURA RED AC, 82nd JECFA—Chemical and Technical Assessment (CTA). 2016, accessed September 28, 2020, http://www.fao.org/3/a-br562e.pdf. (28) A. Bayer, Ueber eine neue Klasse von Farbstoffen, Chem. Ber., 4, 555–558 (1871). (29) L. D. Lavis, Teaching old dyes new tricks: biological probes built from fluoresceins and rhodamines, Annu. Rev. Biochem., 86, 825–843 (2017). (30) C. J. Cooksey, Quirks of dye nomenclature. 10. Eosin Y and its close relatives, Biotech. Histochem., 93, 211–219 (2018). (31) R. Sjoback, J. Nygren, and M. Kubista, Absorption and fluorescence properties of fluorescein, Spectrochim. Acta A., 51, L7–L21 (1995). (32) S. M. Derayea and D. M. Nagy, Application of a xanthene dye, eosin Y, as spectroscopic probe in chemical and pharmaceutical analysis a review, Rev. Anal. Chem., 37, 1–14 (2018). (33) W. R. Orndorff and J. Hemmer, Fluorescein and some of its derivatives, J. Am. Chem. Soc., 49, 1272– 1280 (1927). (34) N. Eastaugh, V. Walsh, T. Chaplin, and R. Siddall, Pigment Compendium: A Dictionary of Historical Pigments (Routledge, Oxford, 2007). (35) K. Hunger and W. Herbst, “Pigments, organic,” in Ullmann’s Encyclopedia of Industrial Chemistry (John Wiley, New York, NY, 2000), pp. 379–423. (36) G. Han, D. Hwang, S. Lee, J. W. Lee, E. Lim, J. Heo, and S. K. Kim, Shedding new light on an old molecule: quinophthalone displays uncommon N-to-O excited state intramolecular proton transfer (ESIPT) between photobases, Sci. Rep., 7, 1–8 (2017). (37) A. Weisz, I. C. James, and M. Perez-Gonzalez, Determination of sulphonated quinophthalones in Quinoline yellow and its lakes using high-performance liquid chromatography, Food. Addit. Contam. Part A., 37, 1–13 (2020). (38) A. Weisz, E. P. Mazzola, J. E. Matusik, and Y. Ito, Preparative separation of isomeric 2-(2-quinolinyl)- 1H-indene-1, 3 (2H)-dione monosulfonic acids of the color additive D&C Yellow No. 10 (Quinoline Yellow) by pH-zone-refining counter-current chromatography, J. Chromatog. A., 923, 87–96 (2001). (39) A. Weisz, I. C. James, E. P. Mazzola, C. D. Ridge, C. F. Ijames, and S. P. Markey, Identification of 1’,5’-naphthyridinophthalone and its quantification in the color additive D&C Yellow No. 10 (Quinoline Yellow) using high-performance liquid chromatography, Food. Addit. Contam. Part A., 35, 439–447 (2018). (40) F. Habashi, Pigments through the ages, Interceram: Int. Ceram. Rev., 65, 156–165 (2016). (41) R. Sidall, Mineral pigments in archaeology: their analysis and the range of available materials, Minerals., 8, 1–35 (2018). (42) G. Pfaff, Inorganic Pigments (Walter de Gruyter GmbH, Berlin, Germany, 2017). (43) A. Towns, Colorants: general survey, Phys. Sci. Rev., 4, 1–18 (2019). (44) G. Buxbaum, “Introduction to inorganic high performance pigments,” in High Performance Pigments, 2nd Ed., E. B. Faulkner and R. J. Schwartz. Eds. (John Wiley, Weinheim, Germany, 2009), pp. 1–6. (45) H. Zollinger, Color Chemistry: Syntheses, Properties, and Applications of Organic Dyes and Pigments, 3rd Ed. (Wiley-VCH, Cambridge, 2003). (46) T. Jesionowski and F. Ciesielczyk, “Pigment, inorganic,” in Encyclopedia of Color Science and Technology, R. Sahmey. Ed. (Springer Science Business Media, New York, NY, 2013), pp. 1–21. (47) H. B. Singh and K. A. Bharati, “Chapter 6-enumeration of dyes,” in Handbook of Natural Dyes and Pigments, H. B. Singh and K. A. Bharati. Eds. (Woodhead Publishing, New Delhi, India, 2014), pp. 33–260. (48) D. E. Folmer, Potassium Aluminium Silicate- Based Pearlescent Pigments Types 1, II and III., 77th JECFA─ Chemical and Technical Assessment (CTA). 2013, accessed September 28, 2020, http://www. fao.org/fileadmin/user_upload/agns/pdf/CTA_PAS_BPP_77.pdf. (49) H. Kanekar and A. Khale, Coloring agents: current regulatory perspective for coloring agents intended for pharmaceutical & cosmetic use, Int. J. Pharm. Phytopharmacological. Res., 3, 365–373 (2014). (50) G. Buxbaum, H. Printzen, M. Mansmann, D. Rade, G. Trenczek, V. Wilhelm, S. Schwarz, H. Wienand, J. Adel, G. Adrian, K. Brandt, W. B. Cork, H. Winkeler, W. Mayer, and K. Schneider, “Pigments, inorganic, 3. Colored pigments,” in Ullmann’s Encyclopedia of Industrial Chemistry, 3rd Ed., G. Buxbaum and G. Praff. Eds. (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2009), pp. 293–335. (51) A. I. Medalia and L. W. Richards, Tinting strength of carbon black, J. Colloid. Interface. Sci., 40, 233–252 (1972). (52) R. A. Charvat, Coloring of Plastics: Fundamentals, 2nd Ed. (John Wiley, New Jersey, 2005).
496 JOURNAL OF COSMETIC SCIENCE (53) M. Voll and P. Kleinshmit, “Carbon, 6. Carbon black,” in Ullmann’s Encyclopedia of Industrial Chemistry (John Wiley, Weinheim, Germany, 2012), pp. 1–22. (54) O. Fleming, Rosenstein J, The Ultimate Guide to Clean Beauty. 2020, accessed September 28, 2020, https://www.harpersbazaar.com/beauty/skin-care/a28352553/clean-beauty/. (55) T. Maoka, Carotenoids as natural functional pigments, J. Nat. Med., 74, 1–16 (2020). (56) F. Delgado-Vargas and O. Paredes-Lopez, Natural Colorants for Food and Nutraceutical Uses (CRC Press, Boca Raton, FL, 2002). (57) D. B. Rodriguez-Amaya, Carotenoids and Food Preparation: The Retention of Provitamin A Carotenoids in Prepared, Processed and Stored Foods. 1997, accessed September 28, 2020, https://pdf.usaid.gov/ pdf_docs/Pnacb907.pdf. (58) B. B. Rodriguez-Amaya, A Guide to Carotenoid Analysis in Foods (ILSI Press, Washington, DC, 2001). (59) D. B. Rodriguez-Amaya, Food Carotenoids: Chemsitry, Biology and Technology (John Wiley, Chichester, England, 2015). (60) D. B. Rodriquez-Amaya, Natural food pigments and colorants, Curr. Opin. Food. Sci., 7, 20–26 (2016). (61) J. G. Provesi and E. R. Amante, “Carotenoids in pumpkin and impact of processing treatments and storage,” in Processing and Impact on Active Components in Food, V. Preedy. Eds. (Academic Press, London, 2002), pp. 71–80. (62) L. Ngamwonglumlert, S. Devahastin, and N. Chiewchan, Natural colorants: pigment stability and extraction yield enhancement via utilization of appropriate preptreatment and extraction methods, Crit. Rev. Food. Sci. Nutr., 57, 3243–3259 (2017). (63) C. Soukoulis and T. Bohn, A comprehensive the overview on the micro-and nano-technological encapsulation advances for enhancing the chemical stability and bioavailability of carotenoids, Crit. Rev. Food. Sci. Nutr., 58, 1–36 (2018). (64) J. B. Eun, A. Maruf, P. R. Das, and S. H. Nam, A review of encapsulation of carotenoids using spray drying and freeze drying, Crit. Rev. Food. Sci. Nutr., 90, 1–27 (2019). (65) J. Smith, Annatto Extracts., 67th JECFA—Chemical and Technical Assessment (CTA). 2006, accessed September 28, 2020, http://www.fao.org/3/a-at973e.pdf. (66) D. Lira-Morales, M. B. Montoya-Rojo, N. Varela-Bojorquez, M. Gonzalez-Ayon, R. Delez-De La Rocha, M. Verdugo-Perales, and J. A. Sanudo-Barajas, “Dietary fiber and lycopene from tomato processing,” in Plant Food By-Products: Industrial Relevance for Food Additives and Nutraceuticals, J. F. Ayala-Zavala, G. Gonzalez-Aguilar, and M. W. Siddiqui. Eds. (Apple Academic Press, New York, NY, 2018), pp. 255–288. (67) H. Ernst, Recent advances in industrial carotenoid synthesis, Pure. Appl. Chem., 74, 1369–1382 (2002). (68) Z. Olempska-Beer and P. M. Kuznesof, Lycopene Extract from Tomato—Chemical and Technical Assessment (CTA). 2009, accessed September 28, 2020, http://www.fao.org/fileadmin/templates/agns/ pdf/jecfa/cta/71/lycopene_extract_from_tomato.pdf. (69) Z. Olempska-Beer, Lycopene from Blakeslea Trispora—Chemical and Technical Assessment (CTA). 2006, accessed September 28, 2020, http://www.fao.org/fileadmin/templates/agns/pdf/jecfa/cta/67/ lycopene_trispora.pdf. (70) L. Bogacz-Radomska and J. Harasym, β-Carotene—properties and production methods, Food. Qual. Safety., 2, 69–74 (2018). (71) B. D. Ribeiro and D. W. Barreto, Technological aspects of β-Carotene production, Food Bioproc. Tech., 4, 693–701 (2011). (72) EFSA ANS Panel, Scientific opinion on the re-evalutaion of paprika extract (E160c) as a food additive, EFSA. J., 13, 1–52 (2015). (73) N. Koca, F. Karadeniz, and H. S. Burdurlu, Effect of pH on chlorophyll degradation and colour loss in blanched green peas, Food. Chem., 100, 609–615 (2007). (74) M. Gunawan and S. Barringer, Green color degradation of blanched broccoli (Brassica oleracea) due to acid and microbial growth, J. Food. Process. Preserv., 24, 253–263 (2000). (75) I. Viera, A. Parez-Galvez, and M. Roca, Green natural colorants, Molecules., 24, 1–17 (2019). (76) A. Mortensen, Carotenoids and other pigments as natural colorants, Pure. Appl. Chem., 78, 1477–1491 (2006). (77) G. A. F. Hendry and J. D. Houghton, Natural Food Colorants, 2nd Ed. (Springer-Science & Business Media, Glasgow, Scotland, 1996). (78) H. Inoue, H. Yamashita, K. Furuya, Y. Nonomura, N. Yoshioka, and S. Lib, Determination of copper(II) chlorophyllin by reversed-phase high-performance liquid chromatography, J. Chromatogr. A., 679, 99–104 (1994).
Purchased for the exclusive use of nofirst nolast (unknown) From: SCC Media Library & Resource Center (library.scconline.org)







































































































































































