RANKING OF SURFACTANT-HUMECTANT SYSTEMS 619 in vitro ranking metric predicts that adding glycerol to a solution of 1 % SDS should mitigate skin barrier perturbation. This conclusion, based on a recent in vitro study, is confirmed by the in vivo skin barrier study presented here. Therefore, determining the in vitro perturbation to the skin aqueous pores induced by aqueous surfactant-humectant systems represents a viable practical strategy to predict their in vivo skin barrier per­ turbation potential. The correlation established here between the in vitro ranking metric analysis, which quantifies the perturbation to the skin aqueous pores, and the in vivo skin barrier measurements can potentially be used to screen and rank many surfactants and humec­ tants for use in skin care formulations, thus eliminating the need to conduct costly and time-consuming testing for irritation potential. Such a practical strategy could signifi­ cantly speed up the effort and time required to bring new skin care formulations to the market. REFERENCES (1) P. M. Elias, and K. R. Feingold, "Skin as an Organ of Protection," in Fitzpatrick's Dermatology in General Medicine (McGraw-Hill, New York, 1999). (2) R. Scheuplein, and I. Blank, Permeability of the skin, Physiol. Rev., 51, 702-747 (1971). (3) P. M. Elias, Lipids and the epidermal permeability barrier, Arch. Dermatol. Res., 270, 95-117 (1981). (4) G. K. Menon and P. M. Elias, Morphologic basis for a pore-pathway in mammalian stratum corneum, Skin Pharmacol., 10, 235-246 (1997). (5) H. Tang, S. Mitragotri, D. Blankschtein, and R. Langer, Theoretical description of transdermal transport of hydrophilic permeants: Application to low-frequency sonophoresis, J. Pharm. Sci., 90, 545-568 (2001). (6) S. Ghosh and D. Blankschtein, The role of sodium dodecyl sulfate (SDS) micelles in inducing skin barrier perturbation in the presence of glycerol,]. Cosmet. Sci., 58, 109-133 (2007). (7) K. D. Peck, A. H. Ghanem, and W. I. Higuchi, Hindered diffusion of polar molecules through and effective pore radii estimates of intact and ethanol treated human epidermal membrane, Pharmaceut. Res., 11, 1306-1314 (1994). (8) K. D. Peck, A.H. Ghanem, and W. I. Higuchi, The effect of temperature upon the permeation of polar and ionic solutes through human epidermal membrane,]. Pharm. Sci., 84, 975-982 (1995). (9) A. Tezel, A. Sens, and S. Mitragotri, Description of transdermal transport of hydrophilic solutes during low-frequency s�nophoresis based on a modified porous pathway model,]. Pharm. Sci., 92, 381-393 (2003). (10) W. M. Deen, Hindered transport of large molecules in liquid-filled pores, AIChE ]., 33, 1409-1425 (1987). (11) J. L. Anderson and J. A. Quinn, Restricted transport in small pores, a model for steric exclusion and hindered particle motion, Biophys. J., 14, 130-150 (1974). (12) F. A. Simian, L. D. Rhein, G. L. Grove, J. M. Wojtkowski, R.H. Cagan, and D. D. Scala, Sequential order of skin responses to surfactants during a soap chamber test, Contact Dermatitis, 25, 242-249 (1991). (13) T. Agner and J. Serup, Sodium lauryl sulphate for irritant patch testing-A dose-response study using bioengineering methods for determination of skin irritation,]. Invest. Dermatol., 95, 543-547 (1990). (14) K.-P. Wilhelm, C. Surber, and H. I. Maibach, Quantification of sodium lauryl sulfate irritant der­ matitis in man: Comparison of four techniques: skin color reflectance, transepidermal water loss, laser Doppler flow measurement and visual scores, Arch. Dermatol. Res., 281, 293-295 (1989). (15) K.-P. Wilhelm, M. Samblebe, and C.-P. Siegers, Quantitative in vitro assessment of N-alkyl sulphate­ induced cytotoxicity in human keratinocytes (HaCaT)-Comparison with in vivo human irritation tests, Br. J. Dermatol., 130, 18-23 (1994). (16) K.-P. Wilhelm, A. B. Cua, H. H. Wolff, and H. I. Maibach, Surfactant-induced stratum corneum hydration in vivo: Prediction of the irritation potential of anionic surfactants,]. Invest. Dermatol., 101, 310-315 (1993).
620 JOURNAL OF COSMETIC SCIENCE (17) P. J. Frosch and A. M. Kligman, The soap chamber test-A new method for assessing the irritancy of soaps,]. Am. Acad. Dermatol., l, 35-41 (1979). (18) S. W. Babulak, L. D. Rhein, D. D. Scala, A. F. Simion, and G. L. Grove, Quantitation of erythema in a soap chamber test using the Minolta chroma (reflectance) meter: Comparison of instrumental results with visual assessments,]. Soc. Cosmet. Chem., 37, 475-479 (1986). (19) S. Hornby, Personal Communication, Neutrogena Corporation, Los Angeles, CA. (20) H. Tagami, M. Ohi, K. Iwatsuki, Y. Kanamaru, M. Yamada, and B. Ichijo, Evaluation of the skin surface hydration in vivo by electrical measurement,]. Invest. Dermatol., 75, 500-507 (1980). (21) K. P. Anathapadmanabhan, C. L. Meyers, and M. P. Aronson, Binding of surfactants to stratum corneum,J. Soc. Cosmet. Chem., 47, 185-200 (1996). (22) L. D. Rhein, "In Vitro Interactions: Biochemical and Biophysical Effects of Surfactants On Skin," in Surfactants in Cosmetics, M. M. Rieger and L. D. Rhein, Eds. (Marcel Dekker, New York, 1997), pp. 397-426. (23) G. Imokawa, "Surfactant Mildness", in Surfactants in Cosmetics, M. M. Rieger and L. D. Rhein, Eds. (Marcel Dekker, New York, 1997), pp. 427-471. (24) K. P. Ananthapadmanabhan, D. J. Moore, K. Subramanyan, M. Misra, and F. Meyer, Cleansing without compromise: The impact of cleansers on the skin barrier and the technology of mild cleansing, Dermatologic Therapy, 17, 16-25 (2004). (25) J. Pinnagoda, R. A. Tupker, T.Anger, and J. Serup, Guidelines for transepidermal water loss (TEWL) measurement, Contact Dermatitis, 22, 164-178 (1990). (26) G. L. Grove, M. J. Grove, C. Zerwick, and E. Pierce, Comparative metrology of the evaporimeter and the DermaLab® TEWL probe, Skin Res. Tech., 5, 1-8 (1999). (27) G. L. Grove, M. J. Grove, C. Zerwick, and E. Pierce, Computerized evaporimetry using the Derma­ Lab® TEWL probe, Skin Res. Tech., 5, 9-13 (1999). (28) M. Obata and H. Tagami, A rapid in vitro test to assess skin moisturizers,]. Soc. Cosmet. Chern., 41, 235-241 (1990). (29) P. Moore, S. Puvvada, and D. Blankschtein, Challenging the surfactant monomer skin penetration model: Penetration of sodium dodecyl sulfate micelles into the epidermis,]. Cosmet. Sci., 54, 29-46 (2003). (30) J. W. Fluhr, M. Gloor, L. Lehmann, S. Lazzerini, F. Distance, and E. Berardesca, Glycerol accelerates recovery of barrier function in vivo, Acta Derrn. Venereol., 79, 418-421 (1999). (31) J. Bettinger, M. Gloor, A. Vollert, P. Kleesz, J. Fluhr, and W. Gehring, Comparison of different non-invasive test methods with respect to the different moisturizers on skin, Skin Res. Technol., 5, 21-27 (1999). (32) M. D. Batt and E. Fairhurst, Hydration of the stratum corneum, Int.]. Cosmet. Sci., 8, 253-256 (1986). (33) D.S. Orth and Y. Appa, "Glycerine: A Natural Ingredient for Moisturizing Skin," in Dry Skin and Moisturizers: Chemistry and Function, M. Loden and H. I. Maibach, Eds. (CRC Press, Boca Raton, FL, 2000), pp. 213-228. (34) C. L. Froebe, F. A. Simion, H. Ohlmeyer, L. D. Rhein, J. Mattai, R.H. Cagan, and S. E. Friberg, Prevention of stratum corneum lipid phase transitions in vitro by glycerol-An alternative mechanism for skin moisturization,J. Soc. CoS1net. Chern., 41, 51-65 (1990). (35) A. Rawlings, C. Harding, A. Watkinson, J. Banks, C. Ackermann, and R. Sabin, The effect of glycerol and humidity on desmosome degradation in stratum corneum, Arch. Dermatol. Res., 287, 457-464 (1995). (36) M. Hannuksela, "Glycols," in Dry Skin and Moisturizers: Chemistry and Function, M. Loden and H. I. Maibach, Eds. (CRC Press, Boca Raton, FL, 2000), pp. 413-419. (37) W. Abraham, "Surfactant Effects on Skin Barrier," in Surfactants in Cosmetics, M. M. Rieger and L. D. Rhein, Eds, (Marcel Dekker, New York, 1997), pp. 471-487. (38) C. A. Allen, The skin: A clinicopathological Treatise (Grune & Stratton, New York, 1967). (39) R. M. Adams, "Occupational Skin Disease," in Fitzpatrick's Dermatology in General Medicine. (McGraw­ Hill, New York, 1999). (40) C. K. S. Pease, I. R. White, and D. A. Basketter, Skin as a route of exposure to protein allergens, Clin. Exper. Derrnatol., 27, 296-300 (2002). (41) S. Ghosh and D. Blankschtein, Why is sodium cocoyl isethionate (SCI) mild to the skin barrier?-An in vitro investigation based on the relative sizes of the SCI micelles and the skin aqueous pores, ]. Cosrnet. Sci., 58, 229-244 (2007).
Previous Page Next Page