341 Application of Reverse Micelles in Cosmetic Formulations together with the Ministry of Higher Education Malaysia (MOHE). The authors also acknowledge SHE Empire Sdn. Bhd. for providing the opportunity and the guidance throughout the preparation of this manuscript. REFERENCES (1) S. Krishnan, N.S. Amira, U.N. Atilla, S. Syafawani, M. Hafiz. The usage of cosmetic in Malaysia: Understanding the major factors that affect the user, Management, 7(1), 48–51 (2017). (2) K.O. Havelka. Personal care and cosmetic nanotechnology: Perspective and opportunities, ACS Symposium Series, 961, 201–213 (2007). (3) M.A. Hassali, S.K. AL-Tamimi, O.T. Dawood, A.K. Verma, Malaysian cosmetic market: Current and future prospects, Pharmaceutical Regulatory Affairs, 4(4), 1–3 (2015). (4) A. Ayob, A.I. Awadh, J. Jafri, S. Jamshed, H.M.A Ahmad, H. Hadi, The enlightenment from Malaysian consumers’ perspective toward cosmetic products. Journal of Pharmacy and Bioallied Sciences, 8(3), 229– 234 (2016). (5) S. Yang, L. Liu, J. Han, Y. Tang, Encapsulating plant ingredients for dermocosmetic application: An updated review of delivery systems and characterization techniques. International Journal of Cosmetic Science, 42(1), 16–28 (2020). (6) S. Polarz, M. Kunkel, A. Donner, M. Schlötter, Added-value surfactants, Chemistry – A European Journal, 24(71), 18842–18856 (2018). (7) I.H. Lone, N.R.E., Radwan, J. Aslam, A. Akhter, Concept of reverse micelle method for the synthesis of nano-structured materials, Current Nanoscience, 15(2), 129–136 (2018). (8) P. Vushakola P, A.K. Sailaja, Microemulsions- a potential carrier for drug delivery, Innovare Journal of Life Sciences, 4(2) 1–5 (2016), accessed March 22, 2022, https://innovareacademics.in/journals/index.php/ijls/ article/view/10870 (9) K. Watanabe, Skin care cosmetics, Cosmetic Science and Technology, 551–560, (2017). (10) R.M. Walters, G. Mao, E.T. Gunn, S. Hornby, Cleansing formulations that respect skin barrier integrity, Dermatology Research and Practice, 1–9 (2012). (11) M. Miyake, Y. Yamashita, Molecular structure and phase behavior of surfactants, Cosmetic Science and Technology, 389–414 (2017). (12) R. Miller, Emulsifiers: Types and uses, Encyclopedia of Food and Health, 498–502 (2016). (13) Z.A.A. Aziz, H.M. Nasir, A. Ahmad, S.H.M. Setapar, H. Ahma, M.H.N Noor, M. Rafatullah, A. Khatoon, M.A. Kausar, I. Ahmad, S. Khan, M. Al-Shaeri, G.M. Ashraf, Enrichment of Eucalyptus oil nanoemulsion by micellar nanotechnology: Transdermal analgesic activity using hot plate test in rats’ assay, Scientific Reports, 9(1), 13678 (2019). (14) P.P. Constantinides, J-P. Scalart, Formulation and physical characterization of water-in-oil microemulsions containing long- versus medium-chain glycerides, International Journal of Pharmaceutics, 158(1), 57–68 (1997). (15) N. Anton, H. Mojzisova, E. Porcher, J.P. Benoit, P. Saulnier, Reverse micelle-loaded lipid nano-emulsions: New technology for nano-encapsulation of hydrophilic materials, International Journal of Pharmaceutics, 398(1–2), 204–209 (2010). (16) O.P. Lehtinen, R.W.N. Nugroho, T. Lehtimaa, S. Vierros, P. Hiekkataipale, J. Ruokolainen, M. Sammalkorpi, M. Österberg, Effect of temperature, water content and free fatty acid on reverse micelle formation of phospholipids in vegetable oil. Colloids and Surfaces B: Biointerfaces, 160, 355–363 (2017). (17) S. Kozaka, A. Kashima, R. Wakabayashi, T. Nakata, T. Ueda, M. Goto, Effective transcutaneous delivery of hyaluronic acid using an easy-to-prepare reverse micelle formulation, Cosmetics, 7(3), 52 (2020). (18)V .S. Kislik, “Modern and future trends in fundamentals of solvent extraction,” in Solvent Extraction: Classical and Novel Approaches, 1st Ed. (Elsevier, Oxford, UK, 2012), pp. 439–450.
342 JOURNAL OF COSMETIC SCIENCE (19) S. Lebecque, J.M. Crowet, M.N. Nasir, M. Deleu, L. Lins, Molecular dynamics study of micelles properties according to their size. Journal of Molecular Graphics and Modelling, 72, 6–15 (2017). (20) L. Maibaum, A.R. Dinner, D. Chandler, Micelle formation and the hydrophobic effect, The Journal of Physical Chemistry B., 108(21), 6778–6781 (2004). (21) S.A.V. Morris, R.T. Thompson, R.W. Glenn, K.P. Ananthapadmanabhan, G.B. Kasting, Mechanisms of anionic surfactant penetration into human skin: Investigating monomer, micelle and submicellar aggregate penetration theories, International Journal of Cosmetic Science, 41(1), 55–66 (2019). (22) R.S. Chaurasiya, H.U. Hebbar, Reverse micelles for nanoparticle synthesis and biomolecule separation, Sustainable Agriculture Reviews, 24, 181–211 (2017). (23) E.P. Melo, M.R. Aires-Barros, J.M.S. Cabral, Reverse micelles and protein biotechnology, Biotechnology Annual Review, 7, 87–129 (2001). (24) P.A. Penttilä, S. Vierros, K. Utriainen, N. Carl, L. Rautkari, M. Sammalkorpi, M.O. Sterberg, Phospholipid-based reverse micelle structures in vegetable oil modified by water content, free fatty acid, and temperature, Langmuir, 35(25), 8373–8382 (2019). (25) M.D. Chatzidaki, K.D. Papavasileiou, M.G. Papadopoulos, A. Xenakis, Reverse micelles as antioxidant carriers: an experimental and molecular dynamics study, Langmuir, 33(20), 5077–5085 (2017). (26) G. Eskici, P.H. Axelsen, The size of AOT reverse micelles, The Journal of Physical Chemistry B., 120(44), 11337–11347 (2016). (27) T. Hussain, R. Batool, Microemulsion route for the synthesis of nano-structured catalytic materials, Properties and Uses of Microemulsions, 24, (2017). (28) Z. He, J.S. Tan, S. Abbasiliasi, O.M. Lai, Y.J. Tam, M. Halim, A.B. Ariff, Primary recovery of miraculin from miracle fruit, Synsepalum dulcificum by AOT reverse micellar system, LWT -Food Science and Technology, 64(2), 1243–1250 (2015). (29) S.C. Chuo, N. Abd-Talib, S.H.M Setapar, H. Hassan, H.M. Nasir, A. Ahmad, D. Lokhat, G.M. Ashraf, Reverse micelle Extraction of Antibiotics using an Eco-friendly Sophorolipids Biosurfactant, Scientific Reports, 8(1), 477 (2018). (30) B. Kim, H-E. Cho, S.H. Moon, H-J. Ahn, S. Bae, H.D. Cho, S. An, Transdermal delivery systems in cosmetics, Biomedical Dermatology, 4(10), 1–10 (2020). (31) E. Feitosa, V.R.O Cavalcante, L.Q. Amaral, Phase behavior of the orange essential oil/sodium bis(2- ethylhexyl)sulfosuccinate/water system, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 348 (1–3), 82–86 (2009). (32)V .R. Girardi, J.J. Silber, N. Mariano Correa, R.D. Falcone, The use of two non-toxic lipophilic oils to generate environmentally friendly anionic reverse micelles without cosurfactant. Comparison with the behavior found for traditional organic non-polar solvents, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 457, 354–362 (2014). (33) N. Dib, R.D. Falcone, A. Acuña, L.G. Río, The ionic liquid-surfactant bmim-AOT and nontoxic lipophilic solvents as components of reverse micelles alternative to the traditional systems. A study by 1H NMR spectroscopy, Journal of Molecular Liquids, 304, 112762 (2020). (34) T.T. Nguyen, A. Edelen, B. Neighbors, D.A. Sabatini, Biocompatible lecithin-based microemulsions with rhamnolipid and sophorolipid biosurfactants: formulation and potential applications, Journal of Colloid Interface Science, 348, 498–504 (2010). (35) M.D. Chatzidaki, E. Mitsou, A. Yaghmur, A. Xenakis, V. Papadimitriou, Formulation and characterization of food-grade microemulsions as carriers of natural phenolic antioxidants, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 483, 130–136 (2015). (36) M.A. Polizelli, A.L.D. Santos, E. Feitosa, The effect of sodium chloride on the formation of W/O microemulsions in soybean oil/surfactant/water systems and the solubilization of small hydrophilic molecules, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 315(1–3), 130–135 (2008). (37) M.A. Polizelli, V.R.N Telis, L.Q. Amaral, E. Feitosa, Formation and characterization of soy bean oil/ surfactant/water microemulsions, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 281(1–3), 230–236 (2006).
Purchased for the exclusive use of nofirst nolast (unknown) From: SCC Media Library & Resource Center (library.scconline.org)