2010 TRI/PRINCETON CONFERENCE 257 Nanoparticles are discussed as delivery systems while bilayers of liposomes can be related to skin membranes. Also modifi cation of the nanogel particles with functional groups has a signifi cant impact on its interaction with the active molecules. The observed interac- tion of attributes with the liposomes can be correlated to the penetration of attributes through skin. The emergence of “greener” surface active agents and its applications in cosmetic industry has opened new avenues for research. Though there are considerable advantages of nanomaterials for cosmetics delivery, some of the emerging nanomaterials need to be further studied for their toxicity. ACKNOWLEDGMENTS The authors acknowledge the fi nancial support from the NSF Center for Particulate & Surfactant Systems (CPaSS), a joint NSF I/UCRC undertaking between the University of Florida, Gainesville, and Columbia University. REFERENCES (1) V. Normand, S. Avison, and A. Parker, Modeling the kinetics of fl avour release during drinking, Chemical Senses, 29, 235–245 (2004). (2) C. Quellet, M. Schudel, and R. Ringgenberg, Flavors and fragrance delivery system, Chimia, 55, 421– 428 (2001). (3) L. Ouali and D. Latreche, Polymeric particles and fragrance delivery systems (2004). (4) P. Somasundaran and S. Chakraborty, Preparation of polymeric nanoparticles and nanogels for extraction and release fragrance and bioactive molecules (2006). (5) S. A. Wissing and R. H. Müller, Cosmetic applications for solid lipid nanoparticles (SLN), Int. J Phar- maceut., 254, 65–68 (2003). (6) E. Mathiowitz, M. Kreitz, and L. Brannon-Peppas, Encyclopedia of Controlled Drug Delivery (John Wiley & Sons, New York, 1999). (7) N. Baek and K. Park, Natural polymer gels with fast responses, Refl exive Polymers and Hydrogels, 85–96 (2004). (8) E. G. Lundquist, W. Devonport, and J. P. Will, Polymeric nanoparticles in consumer products, Eur. Patent EP 1447074 (2004). (9) M. Guzman, J. Molpeceres, F. Garcia, M. R. Aberturas, and M. Rodriguez, Formation and characteriza- tion of cyclosporine-loaded nanoparticles, Pharmaceut. Sci., 82(5), 498–502 (1993). (10) H. Mizushima, K. Kaneko, and Y. Ozeki, Manufacture of drug-encapsulated nanoparticles (2006). (11) D. Dupeyron, M. Gonzalez, V. Saez, J. Ramon, and J. Rieumont, Nano-encapsulation of protein using an enteric polymer as carrier., IEE Proceedings: Nanobiotechnology, 152(5), 165–168 (2005). (12) V. R. Muzykantov and T. Dziubla, Antioxidant polymer nanocarriers for use in preventing oxidative injury, U.S. Patent Appl. 20060127386 (2006). (13) P. Somasundaran, S. C. Mehta, and P. Purohit, Silicone emulsions, Adv. Colloid Interface Science (in press). (14) P. Somasundaran, T. H. Wines, S. C. Mehta, N. Garti, and R. Farinato, Emulsions and Their Behavior (in press). (15) F. Liu, P. Somasundaran, and C. C. Gryte, Polyacrylamide microgel synthesis, modifi cation, and charac- terization, 222nd ACS National Meeting, Chicago, IL, August 26–30, 2001. (16) P. Deo and P. Somasundaran, Interactions of hydrophobically modifi ed polyelectrolytes with nonionic surfactants, Langmuir, 21(9), 3950–3956 (2005). (17) P. Somasundaran, S. Chakraborty, P. Deo, N. Deo, and T. Somasundaran, Nanoparticles for cosmetics and personal care formulations, Skin Delivery Systems, 247–256 (2006). (18) G. Blume and E. E. Teichmueller, Liposomes with anti-oxidants and their protective effi cacy against UV-radiation, SOFW J., 125(1), 12–14 (1999). (19) N. Naito and T. Isshiki, Cosmetics and riposomes, Riposomu Oyo no Shintenkai, 644–650 (2005).
JOURNAL OF COSMETIC SCIENCE 258 (20) M. N. Jones, I. G. Lyle, and M. Kaszuba, Cosmetic conjugates of liposomes with lectins, Eur. Patent EP 0566368 (1993). (21) N. Deo and P. Somasundaran, Mechanism of mixed liposome solubilization in the presence of sodium dodecyl sulfate, Colloids Surf. A, 186(1-2), 33–41 (2001). (22) N. Deo and P. Somasundaran, Electron spin resonance study of phosphatidyl choline vesicles using 5-doxyl stearic acid, Colloids Surf B., 25(3), 225–232 (2002). (23) A. Nel, T. Xia, L. Mädler, and N. Li, Toxic potential of materials at the nanolevel, Science, 311, 622–627 (2006). (24) P. E. Ross, Tiny toxins, Technology Rev., 109(2), 66–69 (2006). (25) D. B. Warheit, B. R. Laurence, K. L. Reed, D. H. Roach, G. A. M. Reynolds, and T. R. Webb, Comparative pulmonary toxicity assessment of single-wall carbon nanotubes in rats, Toxicolog. Sci., 77, 117–125 (2004). (26) G. Oberdtörster, Z. Sharp, V. Atudorei, A. Elder, R. Gelein, W. Kreyling, and C. Cox, Translocation of inhaled ultrafi ne particles to the brain, Inhalation Toxicol, 16(6-7), 437–445 (2004). (27) E. Oberdörster, Manufactured nanomaterials (fullerenes, C60) induce oxidative stress in the brain of juvenile largemouth bass, Environ. Health Perspect., 112(10), 1058–1062 (2004). (28) L. Yang and D. Watts, Particle surface characteristics may play an important role in phytotoxicity of alumina nanoparticles, Toxicol. Lett., 158, 122–132 (2005). (29) J. D. Fortner, D. Y. Lyon, C. M. Sayes, A. M. Boyd, J. C. Falkner, E. M. Hotze, L. B. Alemany, Y. J. Tao, W. Guo, K. D. Ausman, V. L. Colvin, and J. B. Hughes, C60 in water: Nanocrystal formation and mi- crobial response, Environ. Sci. Technol., 39(11), 4307–4316 (2005). (30) C. M. Sayes, A. M. Gobin, K. D. Ausman, J, Mendez, J. L. West, and V. L. Colvin, Nano-C60 cytotox- icity is due to lipid peroxidation, Biomaterials, 26(36), 7587–7595 (2005). (31) C. M. Sayes, F. Liang, J. L. Hudson, J. Mendez, W. Guo, J. M. Beach, V. C. Moore, C. D. Doyle, J. L. West, W. E. Billups, K. D. Ausman, and V. L. Colvin, Functionalization density dependence of single- walled carbon nanotubes cytotoxicity in vitro, Toxicol. Lett., 161, 135–142 (2006). (32) F. Liu, P. Somasundaran, and C. Gryte “Novel Polyacrylamide Nanogels for Drug Binding and Drug Delivery,” in Polymeric Materials Science and Engineering 89 (2003), pp. 235. (33) P. Purohit, P. Somasundaran, and R. Kulkarni, Study of properties of modifi ed silicones at solid-liquid interface: Fabric-silicone interactions, J. Colloid Interface Sci. (2006). (34) M. D. Berthiaume and A. D. Baum, J. Soc. Cosmet. Chem., 48(1), 1 (1997). (35) R. M. Hill, Silicone Surfactants, Surfactant science series (Marcel Dekker, New York, 1999). (36) Industry University Center Report, CPaSS, July 2010 (Columbia-UFL internal report). (37) I. A. Nnanna, G. Y. Cheng, and J. Xia, “Potential Applications of Protein-Based Surfactants,” in Pro- tein-Based Surfactants: Synthesis, Physiochemical Properties and Applications (CRC Press, Taylor & Francis Group, Oxfordshire, UK, 2001). (38) K. Sakamoto, “Current Market Developments and Trends in Amino Acid and Protein-Based Surfactants,” in Protein-Based Surfactants: Synthesis, Physiochemical Properties and Applications (CRC Press, Taylor & Francis Group, Oxfordshire, UK, 2001). (39) M. Husmann, K. Menting, H. Rieckert, H. Ring, J. Wiesse, and W. Zinser, Secondary fatty acid amide derivatives: Amino-acid based surfactants for household, industrial and personal care applications, SOFW J., 130, 22–28 (2004). (40) M.R. Infante, L. Pérez, A. Pinazo, P. Clapés, and M.D-C. Morán, “Amino Acid-Based Surfactants,” in Novel Surfactants: Preparation, Applications and Biodegradability, 2nd ed. (Marcel Dekker, New York, 2003). (41) G. O. Reznik et al., Use of sustainable chemistry to produce an acyl amino acid surfactant, Appl. Micro- biol. Biotechnol., 86(5) 1387–1397 (2010). (42) P. Somasundaran, P. Purohit, N. Gokarn, and R. D. Kulkarni, Silicone emulsions: Interfacial aspects and applications, Household and Personal Care J., 3 (2010).
Previous Page Next Page