651 Bidirectional Gut-Skin Axis
(2) Grice EA, Segre JA. The skin microbiome. Nat Rev Microbiol. 2011 9(4):244–253. doi:10.1038/
nrmicro2537
(3) De Pessemier B, Grine L, Debaere M, Maes A, Paetzold B, Callewaert C. Gut-skin axis: current
knowledge of the interrelationship between microbial dysbiosis and skin conditions. Microorganisms.
February 2021 9(2). doi:10.3390/microorganisms9020353
(4) Mahmud MR, Akter S, Tamanna SK, et al. Impact of gut microbiome on skin health: gut-skin axis
observed through the lenses of therapeutics and skin diseases. Gut Microbes. July 2022 14(1):2096995. doi
:10.1080/19490976.2022.2096995
(5) den Besten G, van Eunen K, Groen AK, Venema K, Reijngoud D-J, Bakker BM. The role of short-
chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J Lipid Res.
2013 54(9):2325–2340. doi:10.1194/jlr.R036012
(6) Dokoshi T, Chen Y, Cavagnero KJ, et al. Dermal injury drives a skin to gut axis that disrupts the
intestinal microbiome and intestinal immune homeostasis in mice. Nat Commun. April 2024 15(1):3009.
doi:10.1038/​s41467-024-47072-3
(7) Hiergeist A, Gläsner J, Reischl U, Gessner A. Analyses of intestinal microbiota: culture versus
sequencing. ILAR J. 2015 56(2):228–240. doi:10.1093/ilar/ilv017
(8) Aguiar-Pulido V, Huang W, Suarez-Ulloa V, Cickovski T, Mathee K, Narasimhan G. Metagenomics,
metatranscriptomics, and metabolomics approaches for microbiome analysis. Evol Bioinform Online.
2016 12(suppl 1):5–16. doi:10.4137/EBO.S36436
(9) Handelsman J, Rondon MR, Brady SF, Clardy J, Goodman RM. Molecular biological access to the
chemistry of unknown soil microbes: A new frontier for natural products. Chem Biol. 1998 5(10):​
R245–R249. doi:10.1016/s1074-5521(98)90108-9
(10) Ursell LK, Metcalf JL, Parfrey LW, Knight R. Defining the human microbiome. Nutr Rev. 2012 70(suppl
1):S38–S44. doi:10.1111/j.1753-4887.2012.00493.x
(11) Martín R, Miquel S, Langella P, Bermúdez-Humarán LG. The role of metagenomics in understanding
the human microbiome in health and disease. Virulence. 2014 5(3):413–423. doi:10.4161/viru.27864
(12) Payne M, Azana R, Hoang LMN. Review of 16S and ITS direct sequencing results for clinical specimens
submitted to a reference laboratory. Can J Infect Dis Med Microbiol. 2016 (March 2016) 2016:4210129.
doi:10.1155/2016/4210129
(13) Thomas T, Gilbert J, Meyer F. Metagenomics a guide from sampling to data analysis. Microb Inform
Exp. February 2012 2(1):3. doi:10.1186/2042-5783-2-3
(14) Logsdon GA, Vollger MR, Eichler EE. Long-read human genome sequencing and its applications. Nat
Rev Genet. 2020 21(10):597–614. doi:10.1038/s41576-020-0236-x
(15) Grundy BS, Parikh H, Jacob S, et al. Pathogen detection using metagenomic next-generation sequencing
of plasma samples from patients with sepsis in Uganda. Microbiol Spectr. January 2023 11(1):e0431222.
doi:10.1128/spectrum.04312-22
(16) Pan S, Chen R. Metaproteomic analysis of human gut microbiome in digestive and metabolic diseases.
Adv Clin Chem. 2020 97:1–12. doi:10.1016/bs.acc.2019.12.002
(17) Al-Amrani S, Al-Jabri Z, Al-Zaabi A, Alshekaili J, Al-Khabori M. Proteomics: concepts and applications
in human medicine. World J Biol Chem. 2021 12(5):57–69. doi:10.4331/wjbc.v12.i5.57
(18) Han X, Gross RW. The foundations and development of lipidomics. J Lipid Res. February 2022 63(2):​
100164. doi:10.1016/j.jlr.2021.100164
(19) Chetty A, Blekhman R. Multi-omic approaches for host-microbiome data integration. Gut Microbes.
2024 16(1):2297860. doi:10.1080/19490976.2023.2297860
(20) Bharti R, Grimm DG. Current challenges and best-practice protocols for microbiome analysis. Brief
Bioinform. 2021 22(1):178–193. doi:10.1093/bib/bbz155
(21) Huang H, Ren Z, Gao X, et al. Integrated analysis of microbiome and host transcriptome reveals
correlations between gut microbiota and clinical outcomes in HBV-related hepatocellular carcinoma.
Genome Med. November 2020 12(1):102. doi:10.1186/s13073-020-00796-5
652 JOURNAL OF COSMETIC SCIENCE
(22) Sun J, Xia Y. Pretreating and normalizing metabolomics data for statistical analysis. Genes Dis. July
2024 11(3):100979. doi:10.1016/j.gendis.2023.04.018
(23) Walczak-Skierska J, Monedeiro F, Maślak E, Złoch M. Lipidomics characterization of the microbiome
in people with diabetic foot infection using MALDI-TOF MS. Anal Chem. 2023 95(44):16251–16262.
doi:10.1021/acs.analchem.3c03071
(24) Holčapek M, Liebisch G, Ekroos K. Lipidomic analysis. Anal Chem. 2018 90(7):4249–4257. doi:10.1021/
acs.analchem.7b05395
(25) Sinha S, Lin G, Ferenczi K. The skin microbiome and the gut-skin axis. Clin Dermatol. 2021 39(5):829–839.
doi:10.1016/j.clindermatol.2021.08.021
(26) Salem I, Ramser A, Isham N, Ghannoum MA. The gut microbiome as a major regulator of the gut-skin
axis. Front Microbiol. July 2018 9:1459. doi:10.3389/fmicb.2018.01459
(27) Greene AK, Nelson AM. The gut microbiome in melanoma: A piece of a complex puzzle. JAMA
Dermatol. 2023 159(10):1044–1046. doi:10.1001/jamadermatol.2023.2952
(28) Maguire M, Maguire G. The role of microbiota, and probiotics and prebiotics in skin health. Arch
Dermatol Res. 2017 309(6):411–421. doi:10.1007/s00403-017-1750-3
(29) Codoñer FM, Ramírez-Bosca A, Climent E, et al. Gut microbial composition in patients with psoriasis.
Sci Rep. February 2018 8(1):3812. doi:10.1038/s41598-018-22125-y
(30) O’Neill CA, Monteleone G, McLaughlin JT, Paus R. The gut-skin axis in health and disease: A paradigm
with therapeutic implications. BioEssays. 2016 38(11):1167–1176. doi:10.1002/bies.201600008
(31) Stec A, Sikora M, Maciejewska M, et al. Bacterial metabolites: A link between gut microbiota and
dermatological diseases. Int J Mol Sci. February 2023 24(4). doi:10.3390/ijms24043494
(32) Tan J, McKenzie C, Potamitis M, et al. Insights into the gut-skin axis: implications for skin disorders.
Clin Microbiol Rev. 2018 31:e00101–18.
(33) Cummings JH, Macfarlane GT. Role of intestinal bacteria in nutrient metabolism. Clin Nutr.
1997 16:3–11.
(34) Chakraborty P, Banerjee D, Majumder P, Sarkar J. Gut microbiota nexus: exploring the interactions
with the brain, heart, lungs, and skin axes and their effects on health, Med. Microecol. March 2024 20.
(35) Kimura I, Ichimura A, Ohue-Kitano R, Igarashi M. Free fatty acid receptors in health and disease.
Physiol Rev. 2020 100(1):171–210. doi:10.1152/physrev.00041.2018
(36) Jiminez V, Yusuf N. Bacterial metabolites and inflammatory skin diseases. Metabolites. August 2023 13(8).
doi:10.3390/metabo13080952
(37) Huang Y, Liu L, Hao Z, et al. Potential roles of gut microbial tryptophan metabolites in the complex
pathogenesis of acne vulgaris. Front Microbiol. July 2022 13:942027. doi:10.3389/fmicb.2022.942027
(38) Roager HM, Licht TR. Microbial tryptophan catabolites in health and disease. Nat Commun. August
2018 9(1):3294. doi:10.1038/s41467-018-05470-4
(39) Jennis M, Cavanaugh CR, Leo GC, Mabus JR, Lenhard J, Hornby PJ. Microbiota-derived tryptophan
indoles increase after gastric bypass surgery and reduce intestinal permeability in vitro and in vivo.
Neurogastroenterol Motil. August 2018 30(2). doi:10.1111/nmo.13178
(40) Esser C, Rannug A. The aryl hydrocarbon receptor in barrier organ physiology, immunology, and
toxicology. Pharmacol Rev. 2015 67(2):259–279. doi:10.1124/pr.114.009001
(41) Yu J, Luo Y, Zhu Z, et al. A tryptophan metabolite of the skin microbiota attenuates inflammation
in patients with atopic dermatitis through the aryl hydrocarbon receptor. J Allergy Clin Immunol.
2019 143:2108–2119.e12.
(42) Liu X, Zhang X, Zhang J, et al. Activation of aryl hydrocarbon receptor in Langerhans cells by a microbial
metabolite of tryptophan negatively regulates skin inflammation. J Dermatol Sci. 2020 100(3):192–200.
doi:10.1016/j.jdermsci.2020.10.004
(43) Jux B, Kadow S, Luecke S, Rannug A, Krutmann J, Esser C. The aryl hydrocarbon receptor mediates
UVB radiation-induced skin tanning. J Invest Dermatol. 2011 131(1):203–210. doi:10.1038/jid.2010.269
Previous Page Next Page