624 JOURNAL OF COSMETIC SCIENCE
functions. For studies on fibroblast, we concentrated on ECM components that play a more
structural role, particularly in scar remodelling and tissue integrity. pKTSKS increases
corneal layer thickness and hyaluronic acid synthesis helping to reinforce the skin barrier
and moisturizing functions. We observed that collagen-I, collagen -IV, and fibronectin
production in fibroblasts increased in cells treated with pKTSKS. We hypothesized that
pKTSKS contributes to the improvement of acne scars through dual mechanisms: its
structural role in the dermis, enhancing ECM organization and collagen synthesis, and its
barrier-strengthening role in the epidermis, which enhances hydration and improves tissue
resilience. By targeting both the dermal matrix and epidermal hydration, pKTSKS may act
synergistically to accelerate scar healing and restore skin health.
Associated with C. acnes growth limitation, these data could explain the reduction of redness
and inflammatory blemishes and reduction of roughness observed during clinical tests.
Peptides are known to act safely and efficiently on skin cells and are valuable technologies
for cosmetic industry.17–20,30,31 This pentapeptide modulates skin damage induced by C. acnes
through the control of its quorum to consequently reduce adhesion, biofilm formation and
unpleasant effects on skin (scars, blemishes). In vitro investigations have been confirmed via
two clinical studies that measured skin relief imperfections and facial skin microbiome.
REFERENCES
(1) Byrd AL, Belkaid Y, Segre JA. The human skin microbiome. Nat Rev Microbiol. 2018 16(3):143–155.
doi:10.1038/nrmicro.2017.157
(2) Grice EA, Segre JA. The skin microbiome. Nat Rev Microbiol. 2011 9(4):244–253. doi:10.1038/
nrmicro2537
(3) Kim S, Jazwinski SM. The gut microbiota and healthy aging: a Mini-Review. Gerontology. 2018 64(6):513–
520. doi:10.1159/000490615
(4) Stansbury J. Acne: 4000 consumers speak out. Glob Cosmet Ind Mag. 2020 51–53.
(5) Aubin GG, Portillo ME, Trampuz A, Corvec S. Propionibacterium acnes, an emerging pathogen: from acne
to implant-infections, from phylotype to resistance. Med Mal Infect. 2014 44(6):241–250. doi:10.1016/j.
medmal.2014.02.004
(6) Fitz-Gibbon S, Tomida S, Chiu B-H, et al. Propionibacterium acnes strain populations in the human skin
microbiome associated with acne. J Invest Dermatol. 2013 133(9):2152–2160. doi:10.1038/jid.2013.21
(7) Scholz CFP, Kilian M. The natural history of cutaneous propionibacteria, and reclassification of selected
species within the genus Propionibacterium to the proposed novel genera Acidipropionibacterium
gen nov, Cutibacterium gen nov and Pseudopropionibacterium gen nov. Int J Syst Evol Microbiol.
2016 66(11):4422–4432. doi:10.1099/ijsem.0.001367
(8) Borrel V, Gannesen AV, Barreau M, et al. Adaptation of acneic and non acneic strains of Cutibacterium
acnes to sebum-like environment. Microbiologyopen. 2019 8(9):e00841. doi:10.1002/mbo3.841.
(9) Corvec S. Clinical and biological features of Cutibacterium (formerly Propionibacterium) avidum, an
underrecognized microorganism. Clin Microbiol Rev. 2018 31:1–17.
(10) Huang R, Li M, Gregory RL. Bacterial interactions in dental biofilm. Virulence. 2011 2(5):435–444.
doi:10.4161/viru.2.5.16140
(11) Jahns AC, Lundskog B, Ganceviciene R, et al. An increased incidence of Propionibacterium
acnes biofilms in acne vulgaris: a case-control study. Br J Dermatol. 2012 167(1):50–58.
doi:10.1111/j.1365-2133.2012.10897.x
(12) Jahns AC, Alexeyev OA. Three dimensional distribution of Propionibacterium acnes biofilms in human
skin. Exp Dermatol. 2014 23(9):687–689. doi:10.1111/exd.12482
625 Pentapeptide to Control Acne
(13) Gannesen AV, Zdorovenko EL, Botchkova EA, et al. Composition of the biofilm matrix of Cutibacterium
acnes acneic strain RT5. Front Microbiol. 2019 10:1284. doi:10.3389/fmicb.2019.01284
(14) Miskin JE, Farrell AM, Cunliffe WJ, Holland KT. Propionibacterium acnes, a resident of lipid-
rich human skin, produces a 33 kDa extracellular lipase encoded by gehA. Microbiology (Reading).
1997 143(5):1745–1755. doi:10.1099/00221287-143-5-1745
(15) Rafferty J, Nagaraj H, McCloskey AP, et al. Peptide therapeutics and the pharmaceutical industry:
barriers encountered translating from the laboratory to patients. Curr Med Chem. 2016 23(37):4231–
4259. doi:10.2174/0929867323666160909155222
(16) Lintner K, Peschard O. Biologically active peptides: from a laboratory bench curiosity to a functional
skin care product. Int J Cosmet Sci. 2000 22(3):207–218. doi:10.1046/j.1467-2494.2000.00010.x
(17) Lintner K, Mondon P, Peschard O, Mas-Chamberlin C. Cosmetic applications of a wound healing
peptide. J Cosmet Sci. 2001 52:82–83.
(18) Mondon P, Fache S, Doridot E, Lintner K. From elastin to elastic fibers, Part II: The clinical effects of a
natural dipeptide on the biological cascade, Cosmet. Toilet Mag. 2012 127:658–664.
(19) Mondon P, Hillion M, Peschard O, et al. Evaluation of dermal extracellular matrix and epidermal-
dermal junction modifications using matrix-assisted laser desorption/ionization mass spectrometric
imaging, in vivo reflectance confocal microscopy, echography, and histology: effect of age and peptide
applications. J Cosmet Dermatol. 2015 14(2):152–160. doi:10.1111/jocd.12135
(20) Mondon P, Leroux R, Ringenbach C, Debacker A, Peschard O. A micropeptide modulating a-Crystallin,
ANCR and TRPC6 to improve skin barrier functions and homeostasis. IFSCC Mag. 2019 3:1–6.
(21) Fields GB, Noble RL. Solid phase peptide synthesis utilizing 9-fluorenylmethoxycarbonyl amino acids.
Int J Pept Protein Res. 1990 35(3):161–214. doi:10.1111/j.1399-3011.1990.tb00939.x
(22) Merritt JH, Kadouri DE, O’Toole GA. Growing and analyzing static biofilms. Curr Protoc Microbiol.
2005 Chapter(1):Unit 1B.1. doi:10.1002/9780471729259.mc01b01s00
(23) Boukamp P, Petrussevska RT, Breitkreutz D, Hornung J, Markham A, Fusenig NE. Normal
keratinization in a spontaneously immortalized aneuploid human keratinocyte cell line. J Cell Biol.
1988 106(3):761–771. doi:10.1083/jcb.106.3.761
(24) Labarca C, Paigen K. A simple, rapid, and sensitive DNA assay procedure. Anal Biochem. 1980 102(2):344–
352. doi:10.1016/0003-2697(80)90165-7
(25) Asselineau D, Bernhard B, Bailly C, Darmon M. Epidermal morphogenesis and induction of the 67
kD keratin polypeptide by culture of human keratinocytes at the liquid-air interface. Exp Cell Res.
1985 159(2):536–539. doi:10.1016/s0014-4827(85)80027-6
(26) Christensen GJM, Scholz CFP, Enghild J, et al. Antagonism between Staphylococcus epidermidis
and Propionibacterium acnes and its genomic basis. BMC Genomics. 2016 17:152. doi:10.1186/
s12864-016-2489-5
(27) Moon J, Yoon JY, Yang JH, Kwon HH, Min S, Suh DH. Atrophic acne scar: a process from altered
metabolism of elastic fibres and collagen fibres based on transforming growth factor-β1 signalling. Br J
Dermatol. 2019 181(6):1226–1237. doi:10.1111/bjd.17851
(28) Isard O, Knol AC, Ariès MF, et al. Propionibacterium acnes activates the IGF-1/IGF-1R system in
the epidermis and induces keratinocyte proliferation. J Invest Dermatol. 2011 131(1):59–66. doi:10.1038/
jid.2010.281
(29) Mion S, Rémy B, Plener L, Chabrière É, Daudé D. Quorum sensing and quorum quenching: how to
disrupt bacterial communication to inhibit virulence? Med Sci (Paris). 2019 35(1):31–38. doi:10.1051/
medsci/2018310
(30) Pai VV, Bhandari P, Shukla P. Topical peptides as cosmeceuticals. Indian J Dermatol Venereol Leprol.
2017 February(1):9–18. doi:10.4103/0378-6323.186500
(31) Skibska A, Perlikowska R. Signal peptides promising ingredients in cosmetics. Curr Protein Pept Sci.
2021 22(10):716–728. doi:10.2174/1389203722666210812121129
Previous Page Next Page