401 The Human Stratum Corneum
compromising the SC barrier and the skin microbiome. Even if all the ingredients on
their own are mild in clinical testing, when formulated with other ingredients, the fully
formulated systems can be harsh, and therefore it is important that fully formulated
systems are tested for clinical mildness and skin benefits.
With the increasing consumer desire towards switching to more sustainable and greener
chemicals, the importance of understanding the functional role of newer chemicals and
their impact of the SC structure and function will become significant in the coming
years. Availability of biomarker assays, increased use of in vivo imaging and spectroscopic
techniques, wearable in-vivo methodologies, advanced data collection, and analysis using
AI driven technologies will help guide the technology development with newer and safer
ingredients.
Our improved understanding of the SC biological and biophysical properties over the past
three decades will now lead to novel approaches and ingredients that will provide enhanced
benefits in the coming years. Some of the areas that will receive increased attention in the
coming years include enhanced skincare for population segments such as skin of color,
very elderly skin, sensitive skin, and infant skin. The impact of cosmetic ingredients
and products on the skin microbiome also will become an active area of research in the
coming years. These will offer challenging and exciting opportunities for introducing new
ingredients and products that are safe and sustainable in cosmetics and personal care in the
coming decades.
REFERENCES
(1) Elias PM. Epidermal lipids, barrier function and desquamation, JID. 1983 80:44s–49s.
(2) Rawlings AV. Molecular basis for stratum corneum maturation and moisturization. Br J Dermatol.
2014 171(suppl 3):19–28. doi:10.1111/bjd.13303
(3) Harding CR. The stratum corneum: structure and function in health and disease. Dermatol Ther.
2004 17(suppl 1):6–15. doi:10.1111/j.1396-0296.2004.04s1001.x
(4) Bouwstra JA, Gooris GS. The lipid organisation in human stratum corneum and model systems. Open
Dermatol J. 2010 4(1):10–13. doi:10.2174/1874372201004010010
(5) Rawlings AV, Voegeli R. Stratum corneum proteases and dry skin conditions. Cell Tissue Res.
2013 351(2):217–235. doi:10.1007/s00441-012-1501-x
(6) Grice EA, Segre JA. The skin microbiome, Nature Reviews. Microbiology 9 |APRIL 2011 |245.
(7) Two AM, Nakatsuji T, Kotol PF, et al. The cutaneous microbiome and aspects of skin antimicrobial
defense system resist acute treatment with topical skin cleansers. J Invest Dermatol. 2016 136(10):1950–
1954. doi:10.1016/j.jid.2016.06.612
(8) Murphy BM, Hoptroff M, Arnold D, Eccles R, Campbell-Lee S. In-vivo impact of common cosmetic
preservative systems in full formulation on the skin microbiome. PLOS ONE. 2021 16(7):e0254172.
doi:10.1371/journal.pone.0254172
(9) Mendelsohn R, Flach CR, Moore DJ. Determination of molecular conformation and permeation
in skin via IR spectroscopy, microscopy, and imaging. Biochim Biophys Acta. 2006 1758(7):923–933.
doi:10.1016/j.bbamem.2006.04.009
(10) Caspers PJ, Lucassen GW, Wolthuis R, Bruining HA, Puppels GJ. In vitro and in vivo Raman
spectroscopy of human skin. Biospectroscopy. 1998 4(5)(suppl):S31–S39. doi:10.1002/(SICI)1520-6343​
(1998)4:5+3.0.CO 2-M
(11) Caspers PJ, Bruining HA, Puppels GJ, Lucassen GW, Carter EA. In Vivo Confocal Raman
Microspectroscopy of the Skin: Noninvasive Determination of Molecular Concentration Profiles. Journal
of Investigative Dermatology. 2001 116(3):434–442. doi:10.1046/j.1523-1747.2001.01258.x.
402 JOURNAL OF COSMETIC SCIENCE
(12) Damien F, Boncheva M. The extent of orthorhombic lipid phases in the stratum corneum determines
the barrier efficiency of human skin in vivo. J Invest Dermatol. 2010 130(2):611–614. doi:10.1038/
jid.2009.272
(13) Drutis DM, Hancewicz TM, Pashkovski E, et al. Three-dimensional chemical imaging of skin using
stimulated Raman scattering microscopy. J Biomed Opt. 2014 19(11):111604.doi:10.1117/1.JBO.19.11.111604
(14) Michaels AS, Chandraksekaren SK, Shaw JE. Drug permeation through human skin: theory and in vitro
experimental measurement. AIChE 1975(21):985–996.
(15) Voegeli R, Rawlings AV. Moisturizing at a molecular level the basis of Corneocare. Int J Cosmet Sci.
2023 45(2):133–154. doi:10.1111/ics.12832
(16) Forslind B. A domain mosaic model of the skin barrier. Acta Derm Venereol. 1994 74(1):1–6. doi:10.2340/​
000155557416
(17) Bouwstra JA, Honeywell-Nguyen PL, Gooris GS, Ponec M. Structure of the skin barrier and its modulation
by vesicular formulations. Prog Lipid Res. 2003 42(1):1–36. doi:10.1016/s0163-7827(02)00028-0
(18) Norlén L. Skin barrier structure and function: the single gel phase model. J Invest Dermatol. 2001 117(4):​
830–836. doi:10.1038/jid.2001.1
(19) Suzuki M, Ohno Y, Kihara A. Whole picture of human stratum corneum ceramides, including the
chain-length diversity of long-chain bases. J Lipid Res. 2022 63(7):100235. doi:10.1016/j.jlr.2022.100235
(20) Norlén L, Nicander I, Lundsjö A, Cronholm T, Forslind B. A new HPLC-based method for the
quantitative analysis of inner stratum corneum lipids with special reference to the free fatty acid fraction.
Arch Dermatol Res. 1998 290(9):508–516. doi:10.1007/s004030050344
(21) Pilgram GS, Engelsma-van Pelt AM, Bouwstra JA, Koerten HK. Electron diffraction provides new
information on human stratum corneum lipid organization studied in relation to depth and temperature.
J Invest Dermatol. 1999 113(3):403–409. doi:10.1046/j.1523-1747.1999.00706.x.
(22) Bommannan D, Potts RO, Guy RH. Examination of stratum corneum barrier function in vivo by
infrared spectroscopy. J Invest Dermatol. 1990 95(4):403–408. doi:10.1111/1523-1747.ep12555503.
(23) Yarovoy Y, Drutis DM, Hancewicz TM, Garczarek U, Ananthapadmanabhan KP, Misra M.
Quantification of Lipid Phase Order of In Vivo Human Skin Using Attenuated Total Reflection Fourier
Transform Infrared (ATR FT-IR) Spectroscopy and Multivariate Curve Resolution Analysis. Appl
Spectrosc. 2019 73(2):182–194. doi:10.1177/0003702818812738.
(24) Abbas S, Goldberg JW, Massaro M. Personal cleanser technology and clinical performance. Dermatol
Ther. 2004 17(suppl 1):35–42. doi:10.1111/j.1396-0296.2004.04s1004.x
(25) Frosch PJ, Kligman AM. The soap chamber test. A new method for assessing the irritancy of soaps. J Am
Acad Dermatol. 1979 1(1):35–41. doi:10.1016/s0190-9622(79)70001-6
(26) Sharko PT, Murahata RI, Leyden JJ, Grove GL. Arm wash evaluation with instrumental evaluation: a
sensitive technique for differentiating the irritation potential of personal wash products. J Derm Clin Eval
Soc. 1991:19–26.
(27) Ertel KD, Keswick BH, Bryant PB. A forearm controlled application technique for estimating the
relative mildness of personal cleansing products. J Soc Cosmet Chem. 1995 46:67–76.
(28) Ananthapadmanabhan KP, Moore DJ, Subramanyan K, Misra M, Meyer F. Cleansing without
compromise: the impact of cleansers on the skin barrier and the technology of mild cleansing. Dermatol
Ther. 2004 17(suppl 1):16–25. doi:10.1111/j.1396-0296.2004.04s1002.x
(29) Rhein LD, Robbins CR, Kernee K, Cantore R. Surfactant structure effects on swelling of isolated human
stratum corneum. J Soc Cosmet Chem. 1986 37:125–139.
(30) Wilhelm KP, Cua AB, Wolff HH, Maibach HI. Surfactant-induced stratum corneum hydration in vivo:
prediction of the irritation potential of anionic surfactants. J Invest Dermatol. 1993 101(3):310–315.
doi:10.1111/1523-1747.ep12365467.
(31) Rhein LD. In-vitro interactions: biochemical and biophysical effects of surfactants on skin. In: Rieger
MM, Rhein LD, eds. Surfactants in Cosmetics. Surfactant Science Series. Marcel Dekker 1997:397–425.
Previous Page Next Page